Skip to main content
Log in

Casimir scaling, glueballs, and hybrid gluelumps

  • Hadron Physics
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

Assuming that the Casimir scaling hypothesis is well verified in QCD, masses of glueballs and hybrid gluelumps (gluon attached to a point-like c¯ pair) are computed within the framework of the rotating string formalism. In our model, two gluons are attached by an adjoint string in a glueball, while the gluon and the colour octet c¯ pair are attached by two fundamental strings in a hybrid gluelump. Masses for such exotic hadrons are computed with very few free parameters. These predictions can serve as a guide for experimental searches. In particular, the ground-state glueballs lie on a Regge trajectory and the lightest 2++ state has a mass compatible with some experimental candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Deldar, Phys. Rev. D 62, 034509 (2000) (hep-lat/9911008).

    Article  ADS  Google Scholar 

  2. G.S. Bali, Phys. Rev. D 62, 114503 (2000) (hep-lat/0006022).

    Article  ADS  Google Scholar 

  3. T.H. Hanson, Phys. Lett. B 166, 343 (1986).

    Article  ADS  Google Scholar 

  4. C. Semay, Eur. Phys. J. A 22, 353 (2004) (hep-ph/0409105).

    Article  ADS  Google Scholar 

  5. J.M. Cornwall, A. Soni, Phys. Lett. B 120, 431 (1983).

    Article  ADS  Google Scholar 

  6. A. Szczepaniak, E.S. Swanson, C.-R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76, 2011 (1996) (hep-ph/9511422).

    Article  ADS  Google Scholar 

  7. C.J. Morningstar, M. Peardon, Phys. Rev. D 60, 034509 (1999).

    Article  ADS  Google Scholar 

  8. F. Brau, C. Semay, Phys. Rev. D 70, 014017 (2004) (hep-ph/0412173).

    Article  ADS  Google Scholar 

  9. B.S. Zou, Nucl. Phys. A 655, c41 (1999).

  10. D.V. Bugg, M. Peardon, B.S. Zou, Phys. Lett. B 486, 49 (2000).

    Article  ADS  Google Scholar 

  11. Yu.A. Simonov, Nucl. Phys. B 592, 350 (2001) (hep-ph/0003114).

    Article  ADS  Google Scholar 

  12. N. Brambilla, A. Pineda, J. Soto, A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) (hep-ph/0410047).

    Article  ADS  Google Scholar 

  13. E. Abreu, P. Bicudo, hep-ph/0508281.

  14. A.Yu. Dubin, A.B. Kaidalov, Yu.A. Simonov, Phys. At. Nucl. 56, 1745 (1993) (Yad. Fiz. 56, 213 (1993)) (hep-ph/9311344).

    Google Scholar 

  15. E.L. Gubankova, A.Yu. Dubin, Phys. Lett. B 334, 180 (1994) (hep-ph/9408278).

    Article  ADS  Google Scholar 

  16. V.L. Morgunov, A.V. Nefediev, Yu.A. Simonov, Phys. Lett. B 459, 653 (1999) (hep-ph/9906318).

    Article  ADS  Google Scholar 

  17. D. LaCourse, M.G. Olsson, Phys. Rev. D 39, 2751 (1989).

    Article  ADS  Google Scholar 

  18. T.J. Allen, M.G. Olsson, Phys. Rev. D 68, 054022 (2003) (hep-ph/0306128).

    Article  ADS  Google Scholar 

  19. C. Semay, B. Silvestre-Brac, I.M. Narodetskii, Phys. Rev. D 69, 014003 (2004) (hep-ph/0309256).

    Article  ADS  Google Scholar 

  20. F. Buisseret, C. Semay, Phys. Rev. D 70, 077501 (2004) (hep-ph/0406216).

    Article  ADS  Google Scholar 

  21. F. Buisseret, C. Semay, Phys. Rev. E 71, 026705 (2005) (hep-ph/0409033).

    Article  ADS  Google Scholar 

  22. A.M. Badalian, B.L.G. Bakker, Phys. Rev. D 66, 034025 (2002) (hep-ph/0202246).

    Article  ADS  Google Scholar 

  23. F. Buisseret, C. Semay, Phys. Rev. D 71, 034019 (2005) (hep-ph/0412361).

    Article  ADS  Google Scholar 

  24. C. Semay, D. Baye, M. Hesse, B. Silvestre-Brac, Phys. Rev. E 64, 016703 (2001).

    Article  ADS  Google Scholar 

  25. Yu.A. Simonov, Phys. Lett. B 515, 137 (2001) (hep-ph/0105141).

    Article  ADS  MATH  Google Scholar 

  26. A. Di Giacomo, H. Panagopoulos, Phys. Lett. B 285, 133 (1992).

    Article  ADS  Google Scholar 

  27. A. Di Giacomo, Yu.A. Simonov, Phys. Lett. B 595, 368 (2004) (hep-ph/0404044).

    Article  ADS  Google Scholar 

  28. A.B. Kaidalov, Yu.A. Simonov, Phys. At. Nucl. 63, 1428 (2000) (Yad. Fiz. 63, 1428 (2000)) (hep-ph/9911291).

    Article  Google Scholar 

  29. Yu.A. Simonov, hep-ph/0501182.

  30. W.H. Blask , Z. Phys. A 337, 327 (1990).

    Google Scholar 

  31. F. Brau, C. Semay, Phys. Rev. D 58, 034015 (1998).

    Article  ADS  Google Scholar 

  32. W. Lucha, F.F. Schöberl, Phys. Rev. Lett. 64, 2733 (1990).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

    Article  ADS  Google Scholar 

  34. A. Donnachie, P.V. Landshoff, Phys. Lett. B 437, 408 (1998) (hep-ph/9806344).

    Article  ADS  Google Scholar 

  35. B. Silvestre-Brac, C. Semay, I.M. Narodetskii, A.I. Veselov, Eur. Phys. J. C 32, 385 (2004) (hep-ph/0309247).

    Article  ADS  Google Scholar 

  36. F.J. Llanes-Estrada, S.R. Cotanch, Phys. Lett. B 504, 15 (2001) (hep-ph/0008337).

    Article  ADS  Google Scholar 

  37. M. Foster, C. Michael, Phys. Rev. D 59, 094509 (1999) (hep-lat/9811010).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Semay.

Additional information

V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathieu, V., Semay, C. & Brau, F. Casimir scaling, glueballs, and hybrid gluelumps. Eur. Phys. J. A 27, 225–230 (2006). https://doi.org/10.1140/epja/i2005-10251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10251-7

PACS.

Navigation