Skip to main content
Log in

Water populations in restricted environments of lipid membrane interphases

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We employ molecular dynamics simulations to study the hydration properties of Dipalmitoylphosphatidylcholine (DPPC) bilayers, both in the gel and the liquid crystalline states. We show that while the tight hydration centers (PO and CO moieties) are significantly hydrated in both phases, the gel-fluid transition involves significant changes at the second hydration shell, particularly at the buried region between the hydrocarbon tails. Thus, while almost no buried water population exists in the gel state below the carbonyls, this hydrophobic region becomes partially water accesible in the liquid crystalline state. We shall also show that such water molecules present a lower H-bond coordination as compared to the molecules at the primary hydration shell. This means that, while the latter are arranged in relatively compact nanoclusters (as already proposed), the buried water molecules tend to organize themselves in less compact structures, typically strings or branched strings, with a scarce population of isolated molecules. This behavior is similar to that observed in other hydration contexts, like water penetrating carbon nanotubes or model hydrophobic channels or pores, and reflects the reluctance of water to sacrifice HB coordination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Disalvo, F. Lairion, F. Martini, E. Tymczyszyn, M. Frias, H. Almaleck, G.J. Gordillo, Biochim. Biophys. Acta 1778, 2655 (2008)

    Article  Google Scholar 

  2. L.A. Bagatolli, J.H. Ipsen, A.C. Simonsen, O.G. Mouritsen, Progress Lipid Res. 49, 378 (2010)

    Article  Google Scholar 

  3. J.N. Israelachvili, Biochim. Biophys. Acta 469, 221 (1977)

    Article  Google Scholar 

  4. E. Sparr, H. Wennerstrom, Biophys. J. 81, 1014 (2001)

    Article  Google Scholar 

  5. J.H. Crowe, F.A. Hoekstra, L.M. Crowe, Annu. Rev. Physiol. 54, 579 (1992)

    Article  Google Scholar 

  6. J.H. Crowe, L.M. Crowe, Nat. Biotechnol. 18, 145 (2000)

    Article  Google Scholar 

  7. R. Costard, I.A. Heisler, T. Elsaesser, J. Phys. Chem. Lett. 5, 506 (2014)

    Article  Google Scholar 

  8. S. Damodaran, Colloids Surf. B: Biointerfaces 11, 231 (1998)

    Article  Google Scholar 

  9. E.A. Disalvo, A. Hollmann, L. Semorile, F. Martini, Biochim. Biophys. Acta 1828, 1834 (2013)

    Article  Google Scholar 

  10. V.V. Volkov, D.J. Palmer, R. Righini, Phys. Rev. Lett. 99, 078302 (2007)

    Article  ADS  Google Scholar 

  11. F. Foglia, M.J. Lawrence, C.D. Lorenz, S.E. McLain, J. Chem. Phys. 133, 145103 (2010)

    Article  ADS  Google Scholar 

  12. F.M. Goni, J.L. Arrondo, Faraday Discuss. Chem. Soc. 81, 117 (1986)

    Article  Google Scholar 

  13. T. Soderlund, J.M. Alakoskela, A.L. Pakkanen, P.K. Kinnunen, Biophys. J. 85, 2333 (2003)

    Article  Google Scholar 

  14. E.A. Disalvo, A.M. Bouchet, M.A. Frias, Biochim. Biophys. Acta 1828, 1683 (2013)

    Article  Google Scholar 

  15. K.H. Sheikh, S.P. Jarvis, J. Am. Chem. Soc. 133, 18296 (2011)

    Article  Google Scholar 

  16. R. Tsenkova, J. Near Infrared Spectrosc. 17, 303 (2010)

    Article  ADS  Google Scholar 

  17. R. Tsenkova, Spectrosc. Europe 22, 6 (2010)

    Google Scholar 

  18. J.H. Crowe, Sub-cell. Biochem. 71, 263 (2015)

    Article  Google Scholar 

  19. E.A. Disalvo, M.A. Frias, Langmuir 29, 6969 (2013)

    Article  Google Scholar 

  20. M.A. Frias, E.A. Disalvo, Langmuir 25, 8187 (2009)

    Article  Google Scholar 

  21. D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, AMBER 12, University of California, San Francisco, CA (2012)

  22. J.F. Nagle, S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000)

    Article  Google Scholar 

  23. G. Cevc, Biochemistry 26, 6305 (1987)

    Article  Google Scholar 

  24. S. Vaitheeswaran, H. Yin, J.C. Rasaiah, G. Hummer, Proc. Natl. Acad. Sci. U.S.A. 101, 17002 (2004)

    Article  ADS  Google Scholar 

  25. J.C. Rasaiah, S. Garde, G. Hummer, Annu. Rev. Phys. Chem. 59, 713 (2008)

    Article  ADS  Google Scholar 

  26. L.M. Alarcón, J.M. Montes de Oca, S.A. Accordino, J.A. Rodriguez Fris, G.A. Appignanesi, Fluid Phase Equilib. 362, 81 (2014)

    Article  Google Scholar 

  27. S.R. Accordino, J.M. Montes de Oca, J.A. Rodriguez Fris, G.A. Appignanesi, J. Chem. Phys. 143, 154704 (2015)

    Article  ADS  Google Scholar 

  28. S.Y. Bhide, M.L. Berkowitz, J. Chem. Phys. 123, 224702 (2005)

    Article  ADS  Google Scholar 

  29. C. Calero, H.E. Stanley, G. Franzese, Materials 9, 319 (2016)

    Article  ADS  Google Scholar 

  30. L. Piatkowski, J. de Heij, Huib J. Bakker, J. Phys. Chem. B 117, 1367 (2013)

    Article  Google Scholar 

  31. M.L. Berkowitz, R. Vacha, Acc. Chem. Res. 45, 74 (2012)

    Article  Google Scholar 

  32. M. Stepniewski, A. Bunker, M. Pasenkiewicz-Gierula, M. Karttunen, T. Rog, J. Phys. Chem. B 114, 11784 (2010)

    Article  Google Scholar 

  33. E.A. Disalvo, A. Hollmann, M.F. Martini, Sub-cell. Biochem. 71, 213 (2015)

    Article  Google Scholar 

  34. O.A. Pinto, A.M. Bouchet, M.A. Frias, E.A. Disalvo, J. Phys. Chem. B 118, 10436 (2014)

    Article  Google Scholar 

  35. J. Seelig, P. Ganz, Biochemistry 30, 9354 (1991)

    Article  Google Scholar 

  36. M. Fernandez-Vidal, S.H. White, A.S. Ladokhin, J. Membrane Biol. 239, 5 (2011)

    Article  Google Scholar 

  37. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001)

    Article  ADS  Google Scholar 

  38. E.P. Schulz, L.M. Alarcón, G.A. Appignanesi, Eur. Phys. J. E 34, 114 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Appignanesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcón, L., de los Angeles Frías, M., Morini, M. et al. Water populations in restricted environments of lipid membrane interphases. Eur. Phys. J. E 39, 94 (2016). https://doi.org/10.1140/epje/i2016-16094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16094-5

Keywords

Navigation