Skip to main content
Log in

Spatial patterns in a network composed of neurons with different excitabilities induced by autapse

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

It has been identified that autapse can modulate dynamics of single neurons and spatial patterns of neuronal networks. In the present paper, based on the results that autapse can induce type II excitability changed to type I excitability, spatial pattern transitions are simulated in a two-dimensional neuronal network composed of excitatory coupled neurons with autapse which can induce excitability transition. Different spatial patterns including random-like pattern, irregular wave, regular wave, and nearly synchronous behavior are simulated with increasing the percentage (σ) of neurons with type I excitability. When noise is introduced, spiral waves are induced. By calculating signal-to-noise ratio from the spatial structure function and the mean firing probability of neurons, regular waves and spiral waves exhibit optimal spatial correlation, implying the occurrence of spatial coherence resonance phenomenon. The changes of mean firing probability of neurons show that different firing frequency between type I excitability and type II excitability may be an important factor to modulate the spatial patterns. The results are helpful to understand the spatial patterns including spiral waves observed in the biological experiment on the rat cortex perfused with drugs which can induce single neurons changed from type II excitability to type I excitability and block the inhibitory couplings between neurons. The excitability transition, absence of inhibitory coupling, noise as well as the autapse are important factors to modulate the spatial patterns including spiral waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Uhlhaas, F. Roux, E. Rodriguez, Trends Cogn. Sci. 14, 72 (2010)

    Article  Google Scholar 

  2. S.R. Cobb, E.H. Buhl, K. Halasy, P. Somogyi, Nature 378, 75 (1995)

    Article  ADS  Google Scholar 

  3. A.K. Engel, P. König, A.K. Kreiter, W. Singer, Science 252, 1177 (1991)

    Article  ADS  Google Scholar 

  4. M. Perc, Phys. Rev. E 72, 016207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Perc, Europhys. Lett. 72, 712 (2005)

    Article  ADS  Google Scholar 

  6. M. Perc, Chem. Phys. Lett. 410, 49 (2005)

    Article  ADS  Google Scholar 

  7. O. Carrillo, M.A. Santos, J. García-Ojalvo, J.M. Sancho, Phys. Rev. Lett. 65, 452 (2004)

    Google Scholar 

  8. X.J. Sun, M. Perc, Q.S. Lu, J. Kurths, Chaos Soliton. Fract. 18, 023102 (2008)

    Google Scholar 

  9. P. Jung, G. Mayer-Kress, Phys. Rev. Lett. 74, 2130 (1995)

    Article  ADS  Google Scholar 

  10. S.J. Schiff, T. Sauer, R. Kumar, S.L. Weinstein, Neuroimage 28, 1043 (2005)

    Article  Google Scholar 

  11. J. Viventi, et al., Nat. Neurosci. 14, 1599 (2011)

    Article  Google Scholar 

  12. J.Y. Wu, X.Y. Huang, C. Zhang, Neuroscientist 14, 487 (2008)

    Article  Google Scholar 

  13. X.Y. Huang, et al., J. Neurosci. 24, 9897 (2004)

    Article  Google Scholar 

  14. X.Y. Huang, W. Xu, J. Liang, K. Takagaki, X. Gao, J.Y. Wu, Neuron 68, 978 (2010)

    Article  Google Scholar 

  15. S.J. Schiff, X. Huang, J.Y. Wu, Phys. Rev. Lett. 98, 178102 (2007)

    Article  ADS  Google Scholar 

  16. K.M. Stiefel, B.S. Gutkin, T.J. Sejnowski, PLoS One 3, e3947 (2008)

    Article  ADS  Google Scholar 

  17. Y. Tao, H.G. Gu, X.L. Ding, Int. J. Mod. Phys. B 31, 1750179 (2017)

    Article  ADS  Google Scholar 

  18. W.W. Xiao, H.G. Gu, M.R. Liu, Sci. China Tech. Sci. 59, 1943 (2016)

    Article  Google Scholar 

  19. R. Wang, J.J. Li, M.M. Du, J. Lei, Y. Wu, Commun. Nonlinear Sci. Numer. Simulat. 40, 80 (2016)

    Article  ADS  Google Scholar 

  20. H.G. Gu, B. Jia, Y.Y. Li, G.R. Chen, Physica A 392, 1361 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. X.J. Sun, Q.S. Lu, Chin. Phys. B 19, 040504 (2010)

    Article  ADS  Google Scholar 

  22. Z. Tang, Y.Y. Li, L. Xi, B. Jia, H.G. Gu, Commun. Theor. Phys. 57, 61 (2012)

    Article  ADS  Google Scholar 

  23. Y. Wu, J.J. Li, S.B. Liu, J.Z. Pang, M.M. Du, P. Lin, Cogn. Neurodyn. 7, 431 (2013)

    Article  Google Scholar 

  24. Y.Y. Li, B. Jia, H.G. Gu, S.C. An, Commun. Theor. Phys. 57, 817 (2012)

    Article  ADS  Google Scholar 

  25. Y.Y. Li, H.G. Gu, Int. J. Bifur. Chaos 25, 1550104 (2015)

    Article  Google Scholar 

  26. J. Ma, Y. Xu, C. Wang, W. Jin, Physica A 461, 586 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Perc, New J. Phys. 7, 252 (2005)

    Article  ADS  Google Scholar 

  28. Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Int. J. Mod. Phys. B 24, 1201 (2010)

    Article  ADS  Google Scholar 

  29. J. Ma, H.X. Qin, X.L. Song, R.T. Chu, Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  ADS  Google Scholar 

  30. X.J. Sun, X. Shi, Sci. China Tech. Sci. 57, 879 (2014)

    Article  Google Scholar 

  31. S.B. Liu, Y. Wu, J.J. Li, Y. Xie, N. Tan, Nonlinear Dyn. 73, 1055 (2013)

    Article  Google Scholar 

  32. Y.Y. Li, H.M. Zhang, C.L. Wei, M.H. Yang, H.G. Gu, W. Ren, Chin. Phys. Lett. 26, 030504 (2009)

    Article  ADS  Google Scholar 

  33. J. Ma, Y. Wu, H. Ying, Y. Jia, Chin. Sci. Bull. 56, 151 (2011)

    Article  Google Scholar 

  34. B.C. Zhou, W. Xu, Chaos Soliton. Fract. 38, 1146 (2008)

    Article  ADS  Google Scholar 

  35. K.L. Yung, Y.M. Lei, Y. Xu, Chin. Phys. B 19, 010503 (2010)

    Article  ADS  Google Scholar 

  36. J. Ma, X.L. Song, W.Y. Jin, C.N. Wang, Chaos Soliton. Fract. 80, 31 (2015)

    Article  ADS  Google Scholar 

  37. H.X. Qin, J. Ma, C.N. Wang, R.T. Chu, Sci. China Phys. Mech. 57, 1918 (2014)

    Article  Google Scholar 

  38. J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017)

    Article  Google Scholar 

  39. E. Yilmaz, V. Baysal, M. Ozer, M. Perc, Physica A 444, 538 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. X. Yang, Y. Yu, Z. Sun, Chaos 27, 083117 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. C.N. Wang, et al., Complexity 5436737, 1 (2017)

    Google Scholar 

  42. H.X. Qin, J. Ma, C.N. Wang, Y. Wu, PLoS One 9, e100849 (2014)

    Article  ADS  Google Scholar 

  43. E. Yilmaz, V. Baysal, M. Perc, M. Ozer, Sci. China Tech. Sci. 59, 364 (2016)

    Article  Google Scholar 

  44. H.T. Wang, Y. Chen, Physica A 462, 321 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  45. Y.B. Gong, B.Y. Wang, H.J. Xie, Biosystems 150, 132 (2016)

    Article  Google Scholar 

  46. Q. Wang, Y.B. Gong, Y.N. Wu, Eur. Phys. J. B 88, 103 (2015)

    Article  ADS  Google Scholar 

  47. A. Bacci, J.R. Huguenard, D.A. Prince, J. Neurosci. 23, 859 (2003)

    Article  Google Scholar 

  48. A. Bacci, J.R. Huguenard, Neuron 49, 119 (2006)

    Article  Google Scholar 

  49. D.Q. Guo, et al., Europhys. Lett. 114, 30001 (2016)

    Article  ADS  Google Scholar 

  50. R. Saada, N. Miller, I. Hurwitz, A.J. Susswein, Curr. Biol. 19, 479 (2009)

    Article  Google Scholar 

  51. S.R. Cobb, et al., Neuroscience 79, 629 (1997)

    Article  Google Scholar 

  52. H.V.D. Loos, E.M. Glaser, Brain Res. 48, 355 (1972)

    Article  Google Scholar 

  53. C. Pouzat, A. Marty, J. Physiol. 509, 777 (1998)

    Article  Google Scholar 

  54. G. Tamás, E.H. Buhl, P. Somogyi, J. Neurosci. 17, 6352 (1997)

    Article  Google Scholar 

  55. Z.G. Zhao, H.G. Gu, Sci. Rep. 7, 6760 (2017)

    Article  ADS  Google Scholar 

  56. C. Morris, H. Lecar, Biophys J. 35, 193 (1981)

    Article  ADS  Google Scholar 

  57. T. Tateno, K. Pakdaman, Chaos Soliton. Fract. 14, 511 (2004)

    Google Scholar 

  58. K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, H. Kawakami, Neurocomputing 69, 293 (2006)

    Article  Google Scholar 

  59. D. Somers, N. Kopell, Biol. Cybern. 68, 393 (1993)

    Article  Google Scholar 

  60. I. Belykh, E. de Lange, M. Hasler, Phys. Rev. Lett. 94, 188101 (2005)

    Article  ADS  Google Scholar 

  61. B. Ermentrout, Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students (SIAM, Philadelphia, 2002)

  62. A. Dhooge, W. Govaerts, Y.A. Kuznetsov, ACM Trans. Math. Softw. 29, 141 (2003)

    Article  Google Scholar 

  63. J. Rinzel, G.B. Ermentrout, Analysis of neuronal excitability and oscillations, in Methods in Neuronal Modeling: From Ions to Networks (The MIT Press, Cambridge, 1998), pp. 251–292

  64. E.M. Izhikevich, Int. J. Bifur. Chaos 10, 1171 (2000)

    Article  MathSciNet  Google Scholar 

  65. B.C. Bag, C.K. Hu, Phys. Rev. E 75, 042101 (2007)

    Article  ADS  Google Scholar 

  66. P. Hänggi, P. Jung, C. Zerbe, F. Moss, J. Stat. Phys. 70, 25 (1993)

    Article  ADS  Google Scholar 

  67. Y.H. Zheng, Q.S. Lu, Q.Y. Wang, Int. J. Mod. Phys. C 20, 469 (2009)

    Article  ADS  Google Scholar 

  68. Q.Y. Wang, H.H. Zhang, M. Perc, G.R. Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 3979 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  69. I. Belykh, R. Reimbayev, K. Zhao, Phys. Rev. E 91, 062919 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  70. S. Jalil, I. Belykh, A. Shilnikov, Phys. Rev. E 85, 036214 (2012)

    Article  ADS  Google Scholar 

  71. J.X. Chen, M.M. Guo, J. Ma, Europhys. Lett. 113, 38004 (2016)

    Article  ADS  Google Scholar 

  72. J.X. Chen, H. Zhang, L.Y. Qiao, H. Liang, W.G. Sun, Commun. Nonlinear Sci. Numer. Simul. 54, 202 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  73. A. Bogaard, J. Parent, M. Zochowski, V. Booth, J. Neurosci. 29, 1677 (2009)

    Article  Google Scholar 

  74. R. Reimbayev, I. Belykh, Int. J. Bifur. Chaos 24, 1440013 (2014)

    Article  Google Scholar 

  75. R. Reimbayev, K. Daley, I. Belykh, Philos. Trans. Royal Soc. A 375, 20160282 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  76. Z.G. Zhao, H.G. Gu, Procedia IUTAM 22, 160 (2017)

    Article  Google Scholar 

  77. S. Jalil, I. Belykh, A. Shilnikov, Phys. Rev. E 81, 045201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  78. I. Belykh, A. Shilnikov, Phys. Rev. Lett. 101, 078102 (2008)

    Article  ADS  Google Scholar 

  79. H.G. Gu, B.B. Pan, G.R. Chen, L.X. Duan, Nonlinear Dyn. 78, 391 (2014)

    Article  Google Scholar 

  80. H.G. Gu, B.B. Pan, Nonlinear Dyn. 81, 2107 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuye Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jia, B., Zhang, X. et al. Spatial patterns in a network composed of neurons with different excitabilities induced by autapse. Eur. Phys. J. Spec. Top. 227, 821–835 (2018). https://doi.org/10.1140/epjst/e2018-800006-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-800006-2

Navigation