Skip to main content
Log in

DEM/FEM simulation for impact response of binary granular target and projectile

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Three-dimensional dynamic discrete element method (DEM) and finite element method (FEM) simulation using LS-DYNA were, respectively, applied to the randomly distributed binary granular material and to the cylindrical projectiles in order to clarify the effect of size distribution of target particles on the dynamic behaviour of low density granular material. It was found that the peak resistance force of projectile during penetration depends on the packing density of the granular materials and on the impact velocity of projectile. The change of resistance force was well understood in connection with the propagation and the reflection of stress wave in projectile. The variety of particle size almost did not affect the resistance force of projectile. Densified region in granular material was generated ahead of projectile after impact. The densified region propagated in the depth direction and its propagation speed depended on the packing density of target granular material and impact velocity of projectile. That is, projectile impact behaviours of granular materials can be uniformly handled by impact velocity and packing density of the granular material, not depending on the variety of the particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Allen, E.B. Mayfield, H.L. Morrison, J. Appl. Phys. 28, 370 (1957)

    Article  ADS  Google Scholar 

  2. M.E. Backman, W. Goldsmith, Int. J. Eng. Sci. 16, 1 (1978)

    Article  Google Scholar 

  3. A.F. Savvateev, A.V. Budin, V.A. Kolikov, P.G. Rutberg, Int. J. Impact Eng. 26, 1 (2001)

    Article  Google Scholar 

  4. B. Hermalyn, P.H. Schultz, Icarus 216, 269 (2011)

    Article  ADS  Google Scholar 

  5. V.G. Bazhenov, A.M. Bragov, V.L. Kotov, J. Appl. Mech. Tech. Phys. 50, 1011 (2009)

    Article  ADS  Google Scholar 

  6. A. Van Vooren, J. Borg, H. Sandusky, J. Felts, Procedia Eng. 58, 601 (2013)

    Article  Google Scholar 

  7. J.P. Borg, M.P. Morrissey, C.A. Perich, T.J. Vogler, L.C. Chhabildas, Int. J. Impact Eng. 51, 23 (2013)

    Article  Google Scholar 

  8. A.H. Clark, A.J. Petersen, L. Kondic, R.P. Behringer, Phys. Rev. Lett. 114, 1 (2015)

    Article  Google Scholar 

  9. K.N. Nordstrom, E. Lim, M. Harrington, W. Losert, Phys. Rev. Lett. 112, 1 (2014)

    Article  Google Scholar 

  10. J.C. Ruiz-Suárez, Rep. Prog. Phys. 76, 66601 (2013)

    Article  Google Scholar 

  11. P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979)

    Article  Google Scholar 

  12. K. Wada, H. Senshu, T. Matsui, Icarus 180, 528 (2006)

    Article  ADS  Google Scholar 

  13. S.K. Dwivedi, R.D. Teeter, C.W. Felice, Y.M. Gupta, J. Appl. Phys. 104, 83502 (2008)

    Article  Google Scholar 

  14. J.P. Borg, T.J. Vogler, Int. J. Impact Eng. 35, 1435 (2008)

    Article  Google Scholar 

  15. M.A. Faraone, J.H. Chung, M.T. Davidson, Discrete element analysis of idealized granular geometric packings subjected to gravity, in10th European LS-DYNA Conference 2015, Würzburg, Germany (2015)

  16. Z. Han, H. Teng, J. Wang, Computer generation of sphere packing for discrete element analysis in LS-DYNA, in12th International LS-DYNA® Users Conference (2012), pp. 1–4

  17. S. Yamada, J. Kanno, M. Miyauchi, Inf. Media Technol. 6, 493 (2011)

    Google Scholar 

  18. E. Oñate, J. Rojek, Comput. Methods Appl. Mech. Eng. 193, 3087 (2004)

    Article  ADS  Google Scholar 

  19. N. Karajan, Z. Han, H. Teng, J. Wang, Interaction possibilities of bonded and loose particles in LS-DYNA, in9th European LS-DYNA Conference (2013), pp. 1–27

  20. G.D. Scott, D.M. Kilgour, J. Phys. D.: Appl. Phys. 2, 863 (1969)

    Article  ADS  Google Scholar 

  21. K. Ogawa, S. Takeda, H. Kobayashi, Mech. Eng. J. 2, 14 (2015)

    Article  Google Scholar 

  22. K. Ogawa, S. Takeda, H. Kobayashi, K. Tanigaki, EPJ Web Conf. 94, 4040 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinnosuke Takeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, S., Ogawa, K., Tanigaki, K. et al. DEM/FEM simulation for impact response of binary granular target and projectile. Eur. Phys. J. Spec. Top. 227, 73–83 (2018). https://doi.org/10.1140/epjst/e2018-00071-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00071-3

Navigation