Skip to main content
Log in

Non-hydrodynamic collective modes in liquid metals and alloys

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

An Erratum to this article was published on 08 May 2018

This article has been updated

Abstract

A short review of analytical and numerical results, obtained for collective dynamics in liquid metals and alloys within a theoretical approach of Generalized Collective Modes (GCM) is presented. The GCM approach permits to represent dynamic structure factors in wide ranges of wave numbers and frequencies as a sum of contributions from hydrodynamic and non-hydrodynamic processes. The origin of collective modes that make important contributions to dynamic structure factors beyond the hydrodynamic regime in liquid metals and alloys is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 08 May 2018

    "A misprint has been found in paper [1] in expression for the propagation gap for transverse collective excitations, equation (24). The power index ���2��� at the shear viscosity was missing."

  • 08 May 2018

    A misprint has been found in paper [1] in expression for the propagation gap for transverse collective excitations, equation (24). The power index ���2��� at the shear viscosity was missing. The correct expression reads:

References

  1. J.-P. Boon, S. Yip, Molecular Hydrodynamics (McGraw-Hill, 1980)

  2. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic, 1986)

  3. C. Cohen, J.W.H. Sutherland, J.M. Deutch, Phys. Chem. Liq. 2, 213 (1971)

    Article  Google Scholar 

  4. U. Balucani, M. Zoppi, Dynamics of the liquid state (Clarendon, 1994)

  5. I.M. deSchepper, E.G.D. Cohen, C. Bruin, J.C. van Rijs, W. Montfrooij, L.A. de Graaf, Phys. Rev. A 38, 271 (1988)

    Article  ADS  Google Scholar 

  6. I. Mryglod, Condens. Matter Phys. 1, 753 (1998)

    Google Scholar 

  7. I.M. Mryglod, I.P. Omelyan, M.V. Tokarchuk, Mol. Phys. 84, 235 (1995)

    Article  ADS  Google Scholar 

  8. T. Bryk, I. Mryglod, G. Kahl, Phys. Rev. E 56, 2903 (1997)

    Article  ADS  Google Scholar 

  9. T. Scopigno, G. Ruocco, F. Sette, Rev. Mod. Phys. 77, 881 (2005)

    Article  ADS  Google Scholar 

  10. T. Bryk, I. Mryglod, Condens. Matter Phys. 7, 471 (2004)

    Google Scholar 

  11. D.D. Joseph, L. Preziosi, Rev. Mod. Phys. 61, 41 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. F. Bencivenga, A. Cunsolo, M. Krisch, G. Monaco, G. Ruocco, F. Sette, Europhys. Lett. 75, 70 (2006)

    Article  ADS  Google Scholar 

  13. J.-F. Wax, R. Albaki, J.-L. Bretonnet, Phys. Rev. B 62, 14818 (2000)

    Article  ADS  Google Scholar 

  14. T. Bryk, I. Mryglod, T. Scopigno, G. Ruocco, F. Gorelli, M. Santoro, J. Chem. Phys. 133, 024502 (2010)

    Article  ADS  Google Scholar 

  15. T. Bryk, I. Mryglod, Phys. Rev. E 64, 322021 (2001)

    Article  Google Scholar 

  16. T. Bryk, I. Mryglod, J. Phys.: Condens. Matter. 13, 1343 (2001)

    Article  ADS  Google Scholar 

  17. G.G. Simeoni, T. Bryk, F.A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, T. Scopigno, Nature Phys. 6, 503 (2010)

    Article  ADS  Google Scholar 

  18. T. Bryk, I. Mryglod, Condens. Matter Phys. 11, 139 (2008)

    Google Scholar 

  19. N.H. March, M.P. Tosi, Coulomb Liquids (Academic Press, 1984)

  20. T. Bryk, I. Mryglod, Phys. Rev. E 62, 2188 (2000)

    Article  ADS  Google Scholar 

  21. T. Bryk, I. Mryglod, Phys. Rev. E 63, 051202 (2001)

    Article  ADS  Google Scholar 

  22. A.B. Bhatia, D.E. Thornton, N.H. March, Phys. Chem. Liq. 4, 97 (1974)

    Article  Google Scholar 

  23. T. Bryk, I. Mryglod, J. Phys.: Condens. Matter. 12, 6063 (2000)

    Article  ADS  Google Scholar 

  24. T. Bryk, I. Mryglod, J. Phys.: Condens. Matter. 14, L445 (2002)

    Article  ADS  Google Scholar 

  25. P.H.K. de Jong, P. Verkerk, C.F. de Vroege, L.A. de Graaf, W.S. Howells, S.M. Bennington, J. Phys.: Condens. Matt. 6, L681 (1994)

    Article  ADS  Google Scholar 

  26. J. Bosse, G. Jacucci, M. Ronchetti, W. Schirmacher, Phys. Rev. Lett. 57, 3277 (1986)

    Article  ADS  Google Scholar 

  27. A. Campa, E.G.D. Cohen, Phys. Rev. Lett. 61, 853 (1988)

    Article  ADS  Google Scholar 

  28. W. Montfrooij, P. Westerhuijs, V.O. de Haan, I.M. de Schepper, Phys. Rev. Lett. 63, 544 (1989)

    Article  ADS  Google Scholar 

  29. H.E. Smorenburg, R.M. Crevecoeur, I.M. de Schepper, Phys. Lett. A 211, 118 (1996)

    Article  ADS  Google Scholar 

  30. T. Bryk, I. Mryglod, Condens. Matter Phys. 7, 285 (2004)

    Google Scholar 

  31. T. Bryk, I. Mryglod, J. Phys.: Condens. Matter. 17, 413 (2005)

    Article  ADS  Google Scholar 

  32. T. Bryk, J.-F. Wax, Phys. Rev. B 80, 184206 (2009)

    Article  ADS  Google Scholar 

  33. R. Fernandez-Perea, M. Alvarez, F.J. Bermejo, P. Verkerk, B. Roessli, E. Enciso, Phys. Rev. E 58, 4568 (1998)

    Article  ADS  Google Scholar 

  34. E. Enciso, N.G. Almarza, P. Dominguez, M.A. Gonzalez, F.J. Bermejo, Phys. Rev. Lett. 74, 4233 (1995)

    Article  ADS  Google Scholar 

  35. N.H. March, M.P. Tosi, Ann. Phys. 81, 414 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bryk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryk, T. Non-hydrodynamic collective modes in liquid metals and alloys. Eur. Phys. J. Spec. Top. 196, 65–83 (2011). https://doi.org/10.1140/epjst/e2011-01419-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2011-01419-x

Keywords

Navigation