Skip to main content
Log in

To the theory of dynamic remagnetization of ferrogels with internal structures

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present results of theoretical modelling of dynamic of remagnetization of a dimer, consisting of two single-domain ferromagnetic particles immobilized in a non-magnetic medium. The model is based on the Fokker–Plank equation for the density of probability of a given orientation of the particle’s magnetic moments. The classical asymptotic Kramers–Brown approach is generalized for the two particles problem. The results show that formation of the dimers leads to increase of the system magnetization and to significant growth of characteristic time of its remagnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. M.T. Lopez-Lopez, J.D.G. Durán, L.Y. Iskakova, A.Y. Zubarev, Mechanics of magnetopolymer composites: a review. J. Nanofluids 5, 1–17 (2016)

    Article  Google Scholar 

  2. P. Gupta, K. Vermani, S. Garg, Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569 (2002)

    Article  Google Scholar 

  3. J. Qin, I. Asempah, S. Laurent, A. Fornara, R.N. Muller, M. Muhammed, Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv. Mater. 21, 1354–1357 (2009)

    Article  Google Scholar 

  4. Q. Pankhurst, J. Connolly, S. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)

    Article  ADS  Google Scholar 

  5. I. Han, M. Han, J. Kim, S. Lew, Y. Lee, F. Horkay, J. Magda, Constant-volume hydrogel osmometer: a new device concept for miniature biosensors. Biomacromol 3, 1271 (2002)

    Article  Google Scholar 

  6. G.A. Urban, T. Weiss, Hydrogels for Biosensors. In Hydrogel Sensors and Actuators: Engineering and Technology, 2010 ed.; Gerlach, G., Arndt, K.-F., Eds.; Springer: Berlin, Germany,; pp. 197–220 (2009).

  7. L. Trahms, Application of Magnetic Nanoparticles, Biomedical Application of Magnetic Nanoparticles Lecture Notes in Physics 763, Colloidal Magnetic Fluids, ed. S. Odenbach, Springer: Berlin, pp. 327–358 (2009)

  8. M.T. Lopez-Lopez, G. Scionti, A.C. Oliveira, J.D.G. Duran, A. Campos, M. Alaminos et al., Generation and characterization of novel magnetic field-responsive biomaterials. PLoS ONE 10(7), e0133878 (2015)

    Article  Google Scholar 

  9. R.E. Rosensweig, Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370 (2002)

    Article  ADS  Google Scholar 

  10. G. Glockl, R. Hergt, M. Zeisberger, S. Dutz, S. Nagel, W. Weitschies, The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys. Condens. Matter 18, S2935–S2949 (2006)

    Article  ADS  Google Scholar 

  11. E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, Appl. Phys. Rev. 2, 041302 (2015)

    Article  ADS  Google Scholar 

  12. AYu. Zubarev, Magnetic hyperthermia in a system of immobilized magnetically interacting particles. Phys. Rev. E 99, 062609 (2019)

    Article  ADS  Google Scholar 

  13. A.V. Ambarov, V.S. Zverev, E.A. Elfimova, Dynamic response of interacting superparamagnetic particles with aligned easy magnetization axes. J. Magn. Magn. Mater. 497, 166010 (2020)

    Article  Google Scholar 

  14. S. Odenbach, Magnetoviscous Effect in Ferrofluids (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  15. W.F. Brown, Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677 (1963)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Russia Science Foundation, project 20-12-00031 for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

AZ—the main idea and physical model. LI—mathematical transformations and results.

Corresponding author

Correspondence to A. Zubarev.

Ethics declarations

Conflict of interest

Author declare a non-financial, scientific interest to the submitted work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubarev, A., Iskakova, L. To the theory of dynamic remagnetization of ferrogels with internal structures. Eur. Phys. J. Spec. Top. 232, 1293–1303 (2023). https://doi.org/10.1140/epjs/s11734-023-00818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00818-4

Navigation