Skip to main content
Log in

Physico-mathematical models for interacting microbubble clouds during histotripsy

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This work proposes physico-mathematical models for cavitation of microbubble clouds under the influence of bubble–bubble interaction during histotripsy. The mathematical models are formulated to non-interacting and interparticle interacting microbubble clouds on histotripsy under considering the effect of variable surface tension. The governing equations of Keller–Miksis (KM) based on Neo-Hookean (NH) and the Quadratic Law Kelvin–Voigt (QLKV) models are transformed into ordinary differential equations using the non-dimension variables methodology, which are then solved analytically by the modified Plesset–Zwick method. The generalized case of variable surface tension is derived and evaluated for both cases of non-interacting and interacting microbubbles during histotripsy. The effects of the viscoelastic medium on the dynamics of a single microbubble dynamic and interactions between microbubbles through the histotripsy are investigated. From the analysis of the results, the behavior of single bubble growth is bigger than in the case of interaction of multi-bubbles under considering the effect of viscoelastic tissue of Young modulus, viscosity, and stiffening factor on histotripsy. Moreover, the study reveals that, when an increase in the number of cavitation microbubbles occurs, a decrease of the behavior of cavitation microbubbles occurs, on the contrary, increasing of the distance between microbubbles leads to increasing in the growth process; these processes for growth are playing a significant role during the process of histotripsy of cancerous tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support this study are available within this article.

Abbreviations

NH:

Neo-Hookean model

Keller–Miksis:

Keller–Miksis

QLKV:

Quadratic Law Kelvin–Voigt

References

  1. E.G. Chiorean, A.L. Coveler, Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies, drug design. Dev. Ther. 9, 3529–3545 (2015)

    Google Scholar 

  2. O. Kepp, A. Marabelle, L. Zitvogel, G. Kroemer, Oncolysis without viruses-inducing systemic anticancer immune responses with local therapies. Nat. Rev. Clin. Oncol. 17, 1–16 (2019)

    Google Scholar 

  3. A. Hendricks-Wenger, R. Hutchison, E. Vlaisavljevich, I.C. Allen, Immunological effects of histotripsy for cancer therapy. Front. Oncol. 11, 681629 (2021)

    Google Scholar 

  4. W. Sweet, V. Mark, H. Hamlin, Radiofrequency lesions in the central nervous system of man and cat: Including case reports of eight bulbar pain-tract interruptions. J. Neurosurg. 17(2), 213–225 (1960)

    Google Scholar 

  5. I.S. Cooper, Cryogenic surgery of the basal ganglia. JAMA 181(7), 600–604 (1962)

    Google Scholar 

  6. A.D. Maxwell, C.A. Cain, T.L. Hall, J.B. Fowlkes, Z. Xu, Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. Ultrasound Med. Biol. 39(3), 449–465 (2013)

    Google Scholar 

  7. K. Murakami, Y. Yamakawa, J.Y. Zhao, E. Johnsen, Ultrasound-induced nonlinear oscillations of a spherical bubble in a gelatin gel. J. Fluid Mech. 924, A38 (2021)

    ADS  MathSciNet  Google Scholar 

  8. K.B. Bader, E. Vlaisavljevich, A.D. Maxwell, For whom the bubble grows: physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy. Ultrasound Med Biol 45, 1056–1080 (2019)

    Google Scholar 

  9. Z. Li, A.Q. Liu, E. Klaseboer, J.B. Zhang, C.D. Ohi, Single cell membrane poration by bubble-induced microjets in a microfluidic chip dagger. Lab Chip. 13, 1144–1150 (2013)

    Google Scholar 

  10. L. Mancia, M. Rodriguez, J. Sukovich, Z. Xu, E. Johnsen, Single–bubble dynamics in histotripsy and high–amplitude ultrasound: modeling and validation. Phys. Med. Biol. 65, 225014 (2020)

    Google Scholar 

  11. E. Yeats, D. Gupta, Z. Xu, T.L. Hall, Effects of phase aberration on transabdominal focusing for a large aperture, low f-number histotripsy transducer. Phys. Med. Biol. 67(15), 155004 (2022)

    Google Scholar 

  12. Z. Xu, V.A. Khokhlova, K.A. Wear, J.-F. Aubry, T.A. Bigelow, Introduction to the special issue on histotripsy: approaches, mechanisms, mardware, and applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 68(9), 2834–2836 (2021)

    Google Scholar 

  13. X. Zhen, L.H. Timothy, E. Vlaisavljevich, T. Lee Jr., Fred, Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int. J. Hyperth. 38(1), 561–575 (2021)

    Google Scholar 

  14. T.U. Rehman, J. Khirallah, E. Demirel, J. Howell, E. Vlaisavljevich, Y.Y. Durmaz, Development of acoustically active nanocones using the host−guest interaction as a new histotripsy agent. ACS Omega 4(2), 4176–4184 (2019)

    Google Scholar 

  15. L. Mancia, E. Vlaisavljevich, Z. Xu, E. Johnsen, Predicting tissue susceptibility to mechanical cavitation damage in therapeutic ultrasound. Ultrasound Med. Biol. 43(7), 1421–1440 (2017)

    Google Scholar 

  16. J. Yang, H.C. Cramer, C. Franck, Extracting non-linear viscoelastic material properties from violently-collapsing cavitation bubbles. Extreme Mech. Lett. 39, 100839 (2020)

    Google Scholar 

  17. L. Mancia, J. Yang, J.-S. Spratt, J. Sukovich, Z. Xu, T. Colonius, C. Franck, E. Johnsen, Acoustic cavitation rheometry. Soft Matter 17, 2931 (2021)

    ADS  Google Scholar 

  18. E. Stride, The influence of surface adsorption on microbubble dynamics. Phil. Trans. R. Soc. A 366, 2103–2115 (2008)

    ADS  Google Scholar 

  19. M. Sedlar, B. Ji, T. Kratky, T. Rebok, R. Huzlik, Numerical and experimental investigation of three-dimensional cavitating flow around the straight NACA2412 hydrofoil. Ocean Eng. 123, 357 (2016)

    Google Scholar 

  20. Y.N. Zhang, Y.N. Zhang, Z.D. Qian, B. Ji, Y.L. Wu, A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow. Renew. Sustain. Energy Rev. 56, 303 (2016)

    Google Scholar 

  21. X.Y. Wang, Y. Shuai, H.M. Zhang, J.Y. Sun, Y. Yang, Z.L. Huang, B.B. Jiang, Z.W. Liao, J.D. Wang, Y.R. Yang, Bubble breakup in a swirl venturi microbubble generator. Chem. Eng. J. 403, 126397 (2021)

    Google Scholar 

  22. L. Ge, A.M. Zhang, S.P. Wang, Investigation of underwater explosion near composite structures using a combined RKDG–FEM approach. J. Comput. Phys. 404, 109113 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Y. Fu, X. Hu, Y. Liu, P. Wang, S. Chen, H. Zhou, H. Yu, S. Qu, W. Yang, Impact-induced bubble interactions and coalescence in soft materials. Int. J. Solids Struct. 238, 111387 (2022)

    Google Scholar 

  24. A.N. Pouliopoulos, D.A. Jimenez, A. Frank, A. Robertson, L. Zhang, A.R. Kline-Schoder, V. Bhaskar, M. Harpale, E. Caso, N. Papapanou, R. Anderson, R. Li, E.E. Konofagou, Temporal stability of lipid-shelled microbubbles during acoustically-mediated blood-brain barrier opening. Front. Phys. 8, 137 (2020)

    Google Scholar 

  25. A. Jamaluddin, G. Ball, C. Turangan, T. Leighton, The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy. J. Fluid Mech. 677, 305–341 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  26. K.J. Pahk, P. Gélat, H. Kim, N. Saffari, Bubble dynamics in boiling histotripsy. Ultrasound Med. Biol. 44(12), 2673–2696 (2018)

    Google Scholar 

  27. A.K. Abu-Nab, A.F. Abu-Bakr, Effect of heat transfer on the growing bubble with the nanoparticles/water nanofluids in turbulent flow. Math. Model. Eng. Probl. 8(1), 95–102 (2021)

    Google Scholar 

  28. E. Zilonova, M. Solovchuk, T.W.H. Sheu, Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy. Ultrason. Sonochemistry 40, 900–911 (2018)

    Google Scholar 

  29. K.G. Mohamed, S.A. Mohammadein, Growth of a gas bubble in a perfused tissue in an unsteady pressure field with source or sink. Eur. Biophys. J. 48(6), 539–548 (2019)

    Google Scholar 

  30. A.K. Abu-Nab, M.I. Elgammal, A.F. Abu-Bakr, Bubble growth in generalized-Newtonian fluid at Low-Mach number under influence of magnetic field. J. Thermophys. Heat Trans. 36(3), 485–491 (2022)

    Google Scholar 

  31. A.K. Abu-Nab, M. Omran, A.F. Abu-Bakr, Theoretical analysis of pressure relaxation time in N-dimensional thermally-limited bubble dynamics in Fe3O4/water nanofluids. J. Nanofluids 11(3), 410–417 (2022)

    Google Scholar 

  32. A.M. Morad, E.S. Selima, A.K. Abu-Nab, Bubbles interactions in fluidized granular medium for the van der Waals hydrodynamic regime. Eur. Phys. J. Plus. 136(3), 306 (2021)

    Google Scholar 

  33. A.K. Abu-Nab, A.F. Abu-Bakr, Effect of bubble-bubble interaction in Cu-Al2O3/H2O hybrid nanofluids during multibubble growth process Case Stud. Therm. Eng. 33, 101973 (2022)

    Google Scholar 

  34. A.M. Abourabia, K.M. Hassan, A.M. Morad, Analytical solutions of the magma equations for molten rocks in a granular matrix. Chaos, Solit. Fractals 42(2), 1170–1180 (2009)

    ADS  MATH  Google Scholar 

  35. A.M. Abourabia, A.M. Morad, Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter. Phys. A: Stat. Mech. Appl. 437, 330–3350 (2015)

    MathSciNet  MATH  Google Scholar 

  36. J.B. Keller, M. Miksis, Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628–633 (1980)

    ADS  MATH  Google Scholar 

  37. A.K. Abu-Nab, K.G. Mohamed, A.F. Abu-Bakr, Microcavitation dynamics in viscoelastic tissue during histotripsy process. J. Phys.: Condensed Matter 34, 304005 (2022)

    Google Scholar 

  38. L. Mancia, E. Vlaisavljevich, N. Yousefi, M. Rodriguez, T.J. Ziemlewicz, F.T. Lee-Jr, D. Henann, C. Franck, Z. Xu, E. Johnsen, Modeling tissue selective cavitation damage. Phys. Med. Biol. 64(22), 225001 (2019)

    Google Scholar 

  39. E. Vlaisavljevich, A. Maxwell, L. Mancia, E. Johnsen, C. Cain, Z. Xu, Visualizing the histotripsy process: bubble cloud-cancer cell interactions in a tissue-mimicking environment Ultrasound Med. Biol. 42(10), 2466 (2016)

    Google Scholar 

  40. S.A. Mohammadein, K.G. Mohamed, Growth of a gas bubble in a supersaturated and slightly compressible liquid at low Mach number. Mass Heat transf. 47, 1621–1628 (2011)

    ADS  Google Scholar 

  41. S.A. Mohammadein, K.G. Mohamed, On unsteady surface tension and viscosity effects on bubbles growth. JP J. Heat Mass Transf. 10(2), 127–142 (2014)

    Google Scholar 

  42. S.A. Mohammadein, K.G. Mohamed, Growth of a vapour bubble in a superheated liquid of variable surface tension and viscosity between two-phase flow. Appl. Math. Inf. Sci. 7(6), 2311–2318 (2013)

    Google Scholar 

  43. S.A. Mohammadein, K.G. Mohamed, Growth of a gas bubble in a steady diffusion field in a tissue undergoing decompression. Math. Model. Anal. 21(6), 762–773 (2016)

    MathSciNet  MATH  Google Scholar 

  44. A.F. Abu-Bakr, A.K. Abu-Nab, Growth of lipid-coated multi-microbubbles in viscoelastic tissues. Eur. Phys. J. Plus. 137, 513 (2022)

    Google Scholar 

  45. M. Plesset, S. Zwick, The growth of vapour bubbles in superheated liquids. J. Appl. Phys. 25, 493–460 (1954)

    ADS  MathSciNet  MATH  Google Scholar 

  46. S.A. Mohammadein, G.A. Shalaby, A.F. Abu-Bakr, A.K. Abu-Nab, Analytical solution of gas bubble dynamics between two-phase flow. Results Phys. 7, 2396–2403 (2017)

    ADS  Google Scholar 

  47. M. Khojasteh-Manesh, M. Mahdi, Numerical investigation of the effect of bubble-bubble interaction on the power of propagated pressure waves. J. Appl. Comput. Mech. 5(2), 181–191 (2019)

    Google Scholar 

  48. A. Hoger, B.E. Johnson, Linear elasticity for constrained materials: incompressibility. J. Elast. 38, 69–93 (1995)

    MathSciNet  MATH  Google Scholar 

  49. X. Yang, C.C. Church, A model for the dynamics of gas bubbles in soft tissues. J. Acoust. Soc. Am. 118(6), 3595–3606 (2005)

    ADS  Google Scholar 

  50. J. Yang, Y. Yin, H. C. Cramer, C. Franck, in The Penetration Dynamics of a Violent Cavitation Bubble Through a Hydrogel–Water Interface. Challenges in Mechanics of Time Dependent Materials, Mechanics of Biological Systems and Materials & Micro-and Nanomechanics, vol 2. Conference Proceedings of the Society for Experimental Mechanics Series (2021)

  51. E. Vlaisavljevich, K.W. Lin, A. Maxwell, M.T. Warnez, L. Mancia, R.S. Rahul, A.J. Putnam, B. Brian Fowlkes, E. Johnsen, C. Cain, Z. Xu, Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation. Ultrasound Med. Biol. 41(6), 1651–1667 (2015)

    Google Scholar 

  52. C. Edsall, E. Ham, H. Holmes, T.L. Hall, E. Vlaisavljevich, Effects of frequency on bubble-cloud behavior and ablation efficiency in intrinsic threshold histotripsy. Phys. Med. Biol. 66(22), 225009 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali F. Abu-Bakr.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendices

Appendix A

$$Z_{1} = S_{0}^{3} \left( {\frac{{{\Omega }^{5} }}{3}} \right)^{\frac{1}{2}} \frac{2}{{\pi D_{13} }},$$
$$\begin{gathered} Z_{2} = bc^{n} + \frac{1}{2}G\left( {3\alpha - 1} \right)\left( {5 - 4{\Phi }_{0}^{\frac{1}{3}} - 4{\Phi }_{0}^{\frac{4}{3}} } \right) \hfill \\ \quad\quad+ 2G\alpha \left( {\frac{27}{{40}} + \frac{1}{8}{\Phi }_{0}^{\frac{8}{3}} + \frac{1}{5}{\Phi }_{0}^{\frac{5}{3}} + {\Phi }_{0}^{\frac{2}{3}} - 2{\Phi }_{0}^{{\frac{ - 1}{3}}} } \right) \hfill \\\quad\quad - \frac{4}{3}\eta {{\Omega \Phi }}_{0}^{{\frac{ - 1}{3}}} {\Psi }_{{\text{m}}}^{{\prime}} , \hfill \\ \end{gathered}$$
$$Z_{3} = \frac{{3{\Phi }_{0}^{{\frac{ - 1}{3}}} }}{{{\Omega }S_{0} \left( {3c + {\Omega }S_{0} {\Phi }_{0}^{{\frac{ - 2}{3}}} {\Psi }_{m}^{{\prime}} } \right)}},$$
$$\begin{gathered} Z_{4} = - \kappa P_{g0} {\Phi }_{0}^{{\frac{1}{3}\left( {3\kappa - 1} \right)}} {\Psi }_{m}^{{\prime}} \hfill \\\quad\quad - \frac{4}{3}\eta {{\Omega \Phi }}_{0}^{{\frac{ - 2}{3}}} \left( {{\Phi }_{0}^{ - 1} {\Psi }_{m}^{{\prime\prime}} + \frac{1}{3} \mathop { {\Psi }}\limits_{m}^{2} } \right) \hfill \\\quad\quad + \frac{1}{2}G\left( {3\alpha - 1} \right)\left( {\frac{4}{3}{\Psi }_{m}^{{\prime}} + 4{\Phi }_{0} {\Psi }_{m}^{{\prime}} } \right) \hfill \\ \quad\quad- 2G\alpha \left( {\frac{1}{3}{\Phi }_{0}^{\frac{7}{3}} {\Psi }_{m}^{{\prime}} + \frac{1}{3}{\Phi }_{0}^{\frac{4}{3}} {\Psi }_{m}^{{\prime}} + \frac{2}{3}{\Phi }_{0}^{\frac{1}{3}} {\Psi }_{m}^{{\prime}} + \frac{2}{3}{\Phi }_{0}^{\frac{2}{3}} {\Psi }_{m}^{{\prime}} } \right), \hfill \\ \end{gathered}$$
$$Z_{5} = \frac{{\rho_{l} {\Omega }S_{0} {\Phi }_{0}^{ - 2} }}{{9C\left( {1 + \frac{1}{3C}{\Omega }S_{0} {\Phi }_{0}^{{\frac{ - 2}{3}}} {\Psi }_{m}^{{\prime}} } \right)}},$$
$$Z_{6} = Z_{5} \left( {{\Phi }_{0}^{ - 1} \left( { {\Phi }_{0}^{ - 1} {\Psi }_{m}^{{\prime\prime}} + \frac{2}{3} { {\acute{\Psi} }}_{m}^{2} } \right) + \frac{1}{6}{{\Psi^{\prime}}}_{m}^{3} } \right).$$

Appendix B

$$\begin{aligned} S\left( t \right)& = K_{1} \left[K_{2} + \frac{1}{{\rho_{L} \Gamma^{2} R_{0}^{2} }}\left( {1 + \frac{{\Gamma R_{0} \varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m}}}{3c}} \right)\left( {B_{1} + bc^{n} } \right) \hfill \right.\\ &\quad - K_{3} + \frac{{G\left( {3\alpha - 1} \right)}}{{2\rho_{L} \Gamma^{2} R_{0}^{2} }}\left( 5\left( {1 - \frac{{\Gamma R_{0} }}{3c}\varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m} } \right)\right. \hfill \\ &\quad \left.- 4\varphi_{0}^{\frac{1}{3}} - \varphi_{0}^{\frac{4}{3}} \left( {1 - \frac{{\Gamma R_{0} }}{c}\varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m} } \right) \right) \hfill \\ &\quad + \frac{2G\alpha }{{\rho_{L} }}\left( \frac{27}{{40}}\left( {1 + \frac{{\Gamma R_{0} }}{3c}\varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m} } \right) \right.\hfill \\ &\quad + \frac{1}{8}\varphi_{0}^{\frac{8}{3}} \left( {1 - \frac{{7\Gamma R_{0} }}{3c}\varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m} } \right) \hfill \\ &\quad + \frac{1}{5}\varphi_{0}^{\frac{5}{3}} \left( {1 - \frac{{4\Gamma R_{0} }}{3c}\varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m} } \right) \hfill \\ &\quad + \beta_{m}^{{\frac{ - 2}{3}}} \left( {1 - \frac{{\Gamma R_{0} }}{3c}\varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m} } \right) \hfill \\ &\quad \left.\left.- 2\varphi_{0}^{{\frac{ - 1}{3}}} \left( {1 + \frac{{2\Gamma R_{0} }}{3c}\varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m} } \right) \hfill \right) \vphantom{ \left[K_{2} + \frac{1}{{\rho_{L} \Gamma^{2} R_{0}^{2} }}\left( {1 + \frac{{\Gamma R_{0} \varphi_{0}^{{\frac{ - 2}{3}}} {{\mathop \beta \limits^\prime }_m}}}{3c}} \right)\left( {B_{1} + bc^{n} } \right)\right.}\right]J_{a} \sqrt {\frac{24}{\pi }} \sqrt {a_{L} t} . \end{aligned}$$

Here \({K}_{1}, {K}_{2}, {K}_{3}\) and all parameters are introduced in [37].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Bakr, A.F., Mohamed, K.G. & Abu-Nab, A.K. Physico-mathematical models for interacting microbubble clouds during histotripsy. Eur. Phys. J. Spec. Top. 232, 1225–1245 (2023). https://doi.org/10.1140/epjs/s11734-022-00760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00760-x

Navigation