Skip to main content
Log in

An efficient epileptic seizure detection based on tunable Q-wavelet transform and DCVAE-stacked Bi-LSTM model using electroencephalogram

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The recording and measurement of the electric events of the brain utilizing an electroencephalogram (EEG) has turned out to be a prominent equipment among the plethora of devices used for the analysis of neural ailments in the previous few years, especially for seizure detection. It is condemnatory to ascertain if the state of an epilepsy patient’s brain is symptomatic of a plausible seizure beginning; hence, EEG signals aid with the provision of significant information regarding the epileptogenic networks which is meant to be scrutinized and comprehended prior the commencement of therapeutic proceedings. And so relevant alarm or treatment could be provided in time. Desirable seizure prognosis depends on the ability to appropriately distinguish the preictal phase from the interictal phase of ictal in EEG. The pre-programmed seizure indication system can efficiently aid physicians to diagnose and proctor epilepsy which also decreases their amount of work. Various different remarkable studies are found to give great outcomes in the complication two-class seizure diagnosis, but the majority of the feature extraction techniques are contingent on manual techniques. This work nominates a start to end seizure indication structure that is automatic and whose methodology is grounded on deep learning. To achieve this, EEG signals from CHB-MIT Scalp EEG database. The Deep convolutional variational autoencoder (DCVAE) was utilized to study the expressed seizure features from EEG data and The tunable Q-factor wavelet transform (TQWT) was utilized for pre-processing. Later, these vigorous EEG characteristics relevant to seizures are provided as the input to the stacked bi-directional long short-term memory (SB-LSTM) model for the automatic detection of epileptic seizures. One of the best models, achieved an accuracy of 99.6%, sensitivity of 98.85%, and specificity values of 99.8%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.R. Tenney, Epilepsy-work-up and management in children. Seminars Neurol. (2020). https://doi.org/10.1055/s-0040-1718720

    Article  Google Scholar 

  2. G. Xu, T. Ren, Y. Chen, W. Che, A one-dimensional CNN-LSTM model for epileptic seizure recognition using EEG signal analysis. Front. Neurosci. (2020). https://doi.org/10.3389/fnins.2020.578126

    Article  Google Scholar 

  3. C.E. Stafstrom, L. Carmant, Seizures and Epilepsy: an overview for neuroscientists. Cold Spring Harb. Perspect. Med. 5(6), a022426–a022426 (2015). https://doi.org/10.1101/cshperspect.a022426

    Article  Google Scholar 

  4. G.A. Light, L.E. Williams, F. Minow, J. Sprock, A. Rissling, R. Sharp, D.L. Braff, Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr. Protoc. Neurosci. 52(1), 6.25.1-6.25.24 (2010)

    Article  Google Scholar 

  5. M. Manford, Recent advances in epilepsy. J. Neurol. 264(8), 1811–1824 (2017). https://doi.org/10.1007/s00415-017-8394-2

    Article  Google Scholar 

  6. H. Daoud, P. Williams, M. Bayoumi, IoT based Efficient Epileptic Seizure Prediction System Using Deep Learning. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). (2020) https://doi.org/10.1109/wf-iot48130.2020.9221169

  7. R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger, Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E. (2001). https://doi.org/10.1103/physreve.64.061907

    Article  Google Scholar 

  8. U.R. Acharya, Y. Hagiwara, H. Adeli, Automated seizure prediction. Epilepsy Behav. 88(251–261), 2018 (2018). https://doi.org/10.1016/j.yebeh.2018.09.030

    Article  Google Scholar 

  9. O. Faust, U.R. Acharya, H. Adeli, A. Adeli, Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26, 56–64 (2015)

    Article  Google Scholar 

  10. U.R. Acharya, S.L. Oh, Y. Hagiwara, J.H. Tan, H. Adeli, Deep convolutional neural network for the automated detection of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2017)

    Article  Google Scholar 

  11. A. Shoeibi, M. Khodatars, N. Ghassemi, M. Jafari, P. Moridian, R. Alizadehsani, M. Panahiazar, F. Khozeimeh, A. Zare, H. Hosseini-Nejad, A. Khosravi, A.F. Atiya, D. Aminshahidi, S. Hussain, M. Rouhani, S. Nahavandi, U.R. Acharya, Epileptic Seizures detection using deep learning techniques: a review. Int. J. Environ. Res. Public Health 18, 5780 (2021). https://doi.org/10.3390/ijerph18115780

    Article  Google Scholar 

  12. Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T.H. Falk, J. Faubert, Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. (2019). https://doi.org/10.1088/1741-2552/ab260c

    Article  Google Scholar 

  13. S. Patidar, T. Panigrahi, Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals. Biomed. Signal Process. Control 34, 74–80 (2017). https://doi.org/10.1016/j.bspc.2017.01.001

    Article  Google Scholar 

  14. K. Jindal, R. Upadhyay, H.S. Singh, Application of tunable-Q wavelet transform based nonlinear features in epileptic seizure detection. Analog Integr. Circ. Sig. Process. 100, 437–452 (2019). https://doi.org/10.1007/s10470-019-01424-y

    Article  Google Scholar 

  15. A.I. Sharaf, M.A. El-Soud, I.M. El-Henawy, An automated approach for epilepsy detection based on tunable Q-wavelet and firefly feature selection algorithm. Int. J. Biomed. Imaging 2018, 1–12 (2018). https://doi.org/10.1155/2018/5812872

    Article  Google Scholar 

  16. A. Nishad, R.B. Pachori, Classification of epileptic electroencephalogram signals using tunable-Q wavelet transform based filter-bank. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-01722-8

    Article  Google Scholar 

  17. H. Daoud, M. Bayoumi, Deep learning approach for epileptic focus localization. IEEE Trans. Biomed. Circuits Syst. 14(2), 209–220 (2020). https://doi.org/10.1109/TBCAS.2019.2957087

    Article  Google Scholar 

  18. Y. Li, Z. Yu, Y. Chen, C. Yang, Y. Li, X.A. Li, B. Li, Automatic Seizure detection using fully convolutional nested LSTM. Int. J. Neural Syst. (2020). https://doi.org/10.1142/s0129065720500197

    Article  Google Scholar 

  19. L. Bongiorni, A. Balbinot, Evaluation of recurrent neural networks as epileptic seizure predictor. Array 8(100038), 2590–056 (2020). https://doi.org/10.1016/j.array.2020.100038

    Article  Google Scholar 

  20. M. Geng, W. Zhou, G. Liu, C. Li, Y. Zhang, Epileptic Seizure detection based on Stockwell transform and bidirectional long short-term memory. IEEE Trans. Neural Syst. Rehabil. Eng. 28(3), 573–580 (2020). https://doi.org/10.1109/TNSRE.2020.2966290

    Article  Google Scholar 

  21. X. Hu, S. Yuan, F. Xu, Y. Leng, K. Yuan, Q. Yuan, Scalp EEG classification using deep Bi-LSTM network for seizure detection. Comput. Biol. Med. (2020). https://doi.org/10.1016/j.compbiomed.2020.103919

    Article  Google Scholar 

  22. D.K. Thara, B.G. Premasudha, R.S. Nayak, T.V. Murthy, G. AnanthPrabhu, N. Hanoon, Electroencephalogram for epileptic seizure detection using stacked bidirectional LSTM_GAP neural network. Evolut. Intell. (2020). https://doi.org/10.1007/s12065-020-00459-9

    Article  Google Scholar 

  23. X. Wei, L. Zhou, Z. Zhang, Z. Chen, Y. Zhou, Early prediction of epileptic seizures using a long-term recurrent convolutional network. J. Neurosci. Methods (2019). https://doi.org/10.1016/j.jneumeth.2019.108395

    Article  Google Scholar 

  24. M. Savadkoohi, T. Oladduni, A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG \(\backslash \)) Signal. Biocybernet. Biomed. Eng. (2020). https://doi.org/10.1016/j.bbe.2020.07.004

    Article  Google Scholar 

  25. A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P.C. Ivanov, R. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  26. K.A. Khan, P.P. Shanir, Y.U. Khan, O. Farooq, A hybrid Local Binary Pattern and Wavelets based approach for EEG classification for diagnosing epilepsy. Expert Syst. Appl. (2019). https://doi.org/10.1016/j.eswa.2019.112895

    Article  Google Scholar 

  27. H.R. Al Ghayab, Y. Li, S. Siuly, S. Abdulla, A feature extraction technique based on tunable Q-factor wavelet transform for brain signal classification. J. Neurosci. Methods (2018). https://doi.org/10.1016/j.jneumeth.2018.11.014

    Article  Google Scholar 

  28. H. Daoud, M. Bayoumi, Efficient Epileptic Seizure Prediction based on Deep Learning. IEEE Trans. Biomed. Circ. Syst. (2019). https://doi.org/10.1109/tbcas.2019.2929053

    Article  Google Scholar 

  29. D.K. Thara, B.G. PremaSudha, F. Xiong, Epileptic Seizure detection and prediction using stacked bidirectional long short-term memory. Pattern Recogn. Lett. (2019). https://doi.org/10.1016/j.patrec.2019.10.034

    Article  Google Scholar 

  30. L. Fraiwan, M. Alkhodari, Classification of focal and non-focal Epileptic patients using single channel EEG and long short-term memory learning system. IEEE Access 8, 77255–77262 (2020). https://doi.org/10.1109/ACCESS.2020.2989442

    Article  Google Scholar 

  31. Ali Shoeb, John Guttag. Application of machine learning to Epileptic Seizure onset detection. In: 27th International Conference on Machine Learning (ICML), June 21–24, 2010, Haifa, Israel. https://www.physionet.org/files/chbmit/1.0.0/shoeb-icml-2010.pdf

  32. A. Abdelhameed, M. Bayoumi, A deep learning approach for automatic Seizure detection in children with Epilepsy. Front. Comput. Neurosci. (2021). https://doi.org/10.3389/fncom.2021.650050

    Article  Google Scholar 

  33. A.M. Abdelhameed, M. Bayoumi, Semi-supervised EEG signals classification system for Epileptic Seizure detection. IEEE Signal Process. Lett. 26(12), 1922–1926 (2019). https://doi.org/10.1109/LSP.2019.2953870

    Article  ADS  Google Scholar 

  34. K.A. Khan, P.P. Shanir, Y.U. Khan, O. Farooq, A hybrid Local Binary Pattern and Wavelets based approach for EEG classification for diagnosing epilepsy. Expert Syst. Appl. (2019). https://doi.org/10.1016/j.eswa.2019.112895

    Article  Google Scholar 

  35. G.R.S. Reddy, R. Rao, Automated identification system for seizure EEG signals using tunable-Q wavelet transform. Eng. Sci. Technol. Int. J. 20(5), 1486–1493 (2017). https://doi.org/10.1016/j.jestch.2017.11.003

    Article  Google Scholar 

Download references

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivasaravanababu, S., Prabhu, V., Parthasarathy, V. et al. An efficient epileptic seizure detection based on tunable Q-wavelet transform and DCVAE-stacked Bi-LSTM model using electroencephalogram. Eur. Phys. J. Spec. Top. 231, 2425–2437 (2022). https://doi.org/10.1140/epjs/s11734-021-00380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00380-x

Navigation