Skip to main content
Log in

Self-reproducing dynamics in a two-dimensional discrete map

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper mainly explores the self-reproducing dynamics in discrete-time system by constructing a two-dimension map with infinitely many fixed points. Theoretical analysis shows that the attractor of the map can not only be non-destructively reproduced by the initial values of all state variables along all axis directions, but can also be non-destructively reproduced by the parameter along all axis directions. The numerical simulations of bifurcation diagram, Lyapunov exponent, phase portrait and iterative sequence are carried out to further confirm the theoretical results. The self-reproducing behavior of different type of attractors and the corresponding iterative sequences are also confirmed by the experimental measurements performed on the DSP-based platform. This map is especially suitable for chaos-based engineering applications since the offset can be periodically switched by the initial condition and parameter on the premise of keeping robust dynamical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K. Rajagopal, V. Pham, A. Akgul, P. Duraisamy, A class of unexcited hyperjerk systems with megastability and its analog and microcontroller-based embedded system design. Phys. Scr. 95, 5 (2020)

    Google Scholar 

  2. G.D. Leutcho, A.J.M. Khalaf, Z.N. Tabekoueng et al., A new oscillator with mega-stability and its Hamilton energy: infinite coexisting hidden and self-excited attractors. Chaos 30, 033112 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. F. Yuan, Y. Jin, Y.X. Li, Self-reproducing chaos and bursting oscillation analysis in a meminductor-based conservative system. Chaos 30, 053127 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. B. Ramakrishnan, A. Durdu, K. Rajagopalb, A. Akguld, Infinite attractors in a chaotic circuit with exponential memristor and Josephson junction resonator. AEU Int. J. Electron. Commun. 123, 153319 (2020)

    Article  Google Scholar 

  5. C.L. Li, Z.Y. Li, W. Feng, Y.N. Tong et al., Dynamical behavior and image encryption application of a memristor-based circuit system. AEU Int. J. Electron. Commun. 110, 152861 (2019)

    Article  Google Scholar 

  6. Q. Lai, P.D. Kamdem-Kuate, F. Liu et al., An extremely simple chaotic system with infinitely many coexisting attractors. IEEE Trans. Circuit Syst. II Express Brief 67, 1129 (2019)

    Google Scholar 

  7. S. Jafari, A. Ahmadi, A.J. Khalaf, H.R. Abdolmohammadi, V.T. Pham, F.E. Alsaadi, A new hidden chaotic attractor with extreme multi-stability. AEU Int. J. Electron. Commun. 89, 131 (2018)

    Article  Google Scholar 

  8. Q. Lai, Z.Q. Wan, P.D. Kamdem-Kuate, H. Fotsin, Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Commun. Nonlinear Sci. Numer. Simul. 89, 105341 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. H.R. Lin, C.H. Wang, Y.M. Tan, Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99, 2369 (2020)

    Article  Google Scholar 

  10. B.R. Xu, G.Y. Wang, Y.R. Shen, A simple meminductor-based chaotic system with complicated dynamics. Nonlinear Dyn. 88, 2071 (2017)

    Article  MathSciNet  Google Scholar 

  11. Z.H. Wen, Z.J. Li, X. Li, Bursting oscillations and bifurcation mechanism in memristor-based Shimizu-Morioka system with two time scales. Chaos Solitons Fractals 128, 58 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  12. F.Y.M. Tan, C.H. Wang, A simple locally active memristor and its application in HR neurons. Chaos 30, 053118 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. X.Y. Wang, G.Y. Wang, X.Y. Wang, Dynamic character analysis of a LDR, memristor-based chaotic system. J. Circuit Syst. Comput. 23, 6 (2014)

    Article  Google Scholar 

  14. F. Yuan, Y. Deng, Y.X. Li, G.Y. Wang, The amplitude, frequency and parameter space boosting in a memristor-meminductor-based circuit. Nonlinear Dyn. 96, 389 (2019)

    Article  MATH  Google Scholar 

  15. X. Wang, J. Yu, C. Jin, S. Yu, Chaotic oscillator based on memcapacitor and meminductor. Nonlinear Dyn. 96, 161 (2019)

    Article  MATH  Google Scholar 

  16. J. Kengne, R. Tagne-Mogue, T. Fonzin-Fozin et al., Effects of symmetric and asymmetric nonlinearity on the dynamics of a novel chaotic jerk circuit: coexisting multiple attractors, period doubling reversals, crisis, and offset boosting. Chaos Solitons Fractals 121, 63 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. B.R. Xu, G.Y. Wang, H. Hoching-lu et al., A memristor-meminductor-based chaotic system with abundant dynamical behaviors. Nonlinear Dyn. 96, 765 (2019)

    Article  MATH  Google Scholar 

  18. C.Y. Zhou, F. Xie, Z.J. Li, Complex bursting patterns and fast-slow analysis in a smallest chemical reaction system with two slow parametric excitations. Chaos Solitons Fractals 137, 109859 (2020)

    Article  MathSciNet  Google Scholar 

  19. M. Wang, J. Li, S. Yu et al., A novel 3D non-autonomous system with parametrically excited abundant dynamics and bursting. Chaos 30, 4 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Q. Lai, C.Y. Chen, X.W. Zhao et al., Constructing chaotic system with multiple coexisting attractors. IEEE Access 7, 24051 (2019)

    Article  Google Scholar 

  21. Q. Lai, A. Akgul, X.W. Zhao et al., Various types of coexisting attractors in a new 4D autonomous chaotic system. Int. J. Bifurc. Chaos 27, 09 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.B. Li, T.A. Lu, G.R. Chen, H.Y. Xing, Doubling the coexisting attractors. Chaos 29, 051102 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Q. Lai, Z.Q. Wan, P.D.K. Kuate et al., Coexisting attractors, circuit implementation and synchronization control of a new chaotic system evolved from the simplest memristor chaotic circuit. Commun. Nonlinear Sci. Numer. Simul. 89, 105341 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. C.B. Li, J.C. Sprott, W. Hu, Y.J. Xu, Infinite multistability in a self-reproducing chaotic system. Int. J. Bifurc. Chaos 27, 10 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Chen, X. Ren, H.G. Wu et al., Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Front. Inf. Technol. Electron. Eng. 20, 1706–1716 (2019)

    Article  Google Scholar 

  26. Q. Lai, P.D.K. Kuate, H.Q. Pei, Infinitely many coexisting attractors in no-equilibrium chaotic system. Complexity 21, 1 (2020)

    MATH  Google Scholar 

  27. H. Natiq, S. Banerjee, M.R.K. Ariffin, Can hyperchaotic maps with high complexity produce multistability. Chaos. 29, 011103 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. P. Prakash, K. Rajagopal, I. Koyuncu et al., A novel simple 4-d hyperchaotic system with a saddle-point index-2 equilibrium point and multistability: design and FPGA-based applications. Circuits Syst. Signal Process. 39, 4259 (2020)

    Article  Google Scholar 

  29. A.N. Negou, J. Kengne, Dynamic analysis of a unique Jerk system with a smoothly adjustable symmetry and nonlinearity: reversals of period doubling, offset boosting and coexisting bifurcations. AEU Int. J. Electron. Commun. 90, 1 (2018)

    Article  Google Scholar 

  30. Y. Yu, Z. Wang, Initial state dependent nonsmooth bifurcations in a fractional-order memristive circuit. Int. J. Bifurc. Chaos 28, 1850091 (2018)

  31. Z. Wei, A. Akgul, U.E. Kocamaz et al., Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo. Chaos Solitons Fractals 111, 157 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. J.Y. Chen, F.H. Min, Q.S. Jin, B.M. Ye, Coexistence, bifurcation and chaos of a periodically forced duffing system with absolute nonlinearity. Eur. Phys. J. Spec. Top. 228, 1405 (2019)

    Article  Google Scholar 

  33. G.Y. Wang, F. Yuan, G.R. Chen, Y. Zhang, Coexisting multiple attractors and riddled basins of a memristive system. Chaos 28, 1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Bao, N. Wang, B.C. Bao et al., Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun. Nonlinear Sci. Numer. Simul. 57, 264 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Z.Y. Guo, S.Q. Ou, J. Wang, Multistability of switched neural networks with sigmoidal activation functions under state-dependent switching. Neural Netw. 122, 239 (2020)

    Article  Google Scholar 

  36. C.G. Ma, J. Mou, Y.H. Cao et al., Multistability analysis of a conformable fractional-order chaotic system. Phys. Scr. 95, 7 (2020)

    Article  Google Scholar 

  37. H.R. Lin, C.H. Wang, Y.C. Sun, W. Yao, Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100, 3667 (2020)

    Article  Google Scholar 

  38. B.C. Bao, H.Z. Li, L. Zhu et al., Initial-switched boosting bifurcations in 2D hyperchaotic map. Chaos 30, 3 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Bao, Z.Y. Hua, N. Wang et al., Initials-boosted coexisting chaos in a 2d sine map and its hardware implementation. IEEE Trans. Ind. Inform. 17, 2 (2020)

    Google Scholar 

  40. C.L. Li, W.H. Hai, Constructing multiwing attractors from a robust chaotic system with non-hyperbolic equilibrium points. Automatika 59, 2 (2018)

    Article  Google Scholar 

  41. S.B. He, K.H. Sun, Y.X. Peng, L. Wang, Modeling of discrete fracmemristor and its application. AIP Adv. 10, 015332 (2020)

    Article  ADS  Google Scholar 

  42. S. Panahi, J.C. Sprott, S. Jafari, Two simplest quadratic chaotic maps without equilibrium. Int. J. Bifurc. Chaos 28, 12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Jafari, V. Pham, S.M. Golpayegani et al., The relationship between chaotic maps and some chaotic systems with hidden attractors. Int. J. Bifurc. Chaos 26, 13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. S.B. He, S. Banerjee, Multicavity formations and complexity modulation in a hyperchaotic discrete system. Phys. A 490, 366 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Hunan Provincial Natural Science Foundation of China (Nos. 2019JJ40109, 2020JJ4337); Research Foundation of Education Bureau of Hunan Province of China (No. 18A314); Science and Technology Program of Hunan Province (No. 2019TP1014); Science and Research Creative Team of Hunan Institute of Science and Technology (No. 2019-TD-10); Natural Science Foundation of China (No. 61901530); research and innovation project of the graduate students of Hunan Institute of Science and Technology (No. YCX2020 A336).

Author information

Authors and Affiliations

Authors

Contributions

Paper conception: CL. Experimental conception and design: CL, XY. Experiment implementation: XY, JD. Software simulation: ZC, YY. Data analysis: SH. Paper writing: CL.

Corresponding author

Correspondence to Chunlai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, Z., Yang, X. et al. Self-reproducing dynamics in a two-dimensional discrete map. Eur. Phys. J. Spec. Top. 230, 1959–1970 (2021). https://doi.org/10.1140/epjs/s11734-021-00182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00182-1

Navigation