Skip to main content
Log in

Temporal instability of a power-law viscoelastic nanofluid layer

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The stability of the interface formed by a viscoelastic nanofluid and viscous incompressible fluid is examined here. The layout is taken in such a way that the viscoelastic nanofluid lies above the viscous fluid, and therefore, the interface experiences Rayleigh–Taylor type instability. The power-law viscoelastic liquid is considered for the linear stability analysis and the potential flow theory of viscous fluids is enforced to solve the mathematical equations. This theory includes the viscosity of the fluids in the analysis, while the flow is considering as irrotational. The stress balance equation at the interface contains normal viscous stresses and their difference is neutralized by interfacial tension. An algebraic equation of second degree is achieved and stability/instability is discussed based on the negative/positive roots of this equation. The response of flow parameters is studied by the various plots based on the growth rate parameter. It is found that the perturbation grows rapidly in the case of viscoelastic nanofluid when compared with the Newtonian nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\rho _{\mathrm{nf}}\) :

Density of power-law nanofluid

\(\mu _{\mathrm{nf}}\) :

Viscosity of power-law nanofluid

n :

Power-law index

\(\varphi _{\mathrm{ag}}\) :

Aggregate volume fraction

\(\varphi _{m}\) :

Maximum possible volume fraction for prolate spheroids

K :

Consistency coefficient

a :

Length of semi-major axis of nanoparticle

d :

Fractal index

\(h_{v}\) :

Width of viscous fluid layer

g :

Gravitational accelaration

\(\zeta \) :

Surface elevation

k :

Wave number

\(\varphi _{\bmod }\) :

Equivalent volume fraction

\(\rho _{v}\) :

Density of viscous fluid

\(\mu _{v}\) :

Viscosity of viscous fluid

\(\omega \) :

Growth rate of disturbances

\(\delta \) :

Shape parementer of nano particle

\(\gamma \) :

Thickness of the interfacial layer

b :

Length of semi-minor axis of nanoparticle

\(h_{\mathrm{nf}}\) :

Width of power-law nanofluid layer

\(\varphi _{\mathrm{nf}}, \varphi _{v}\) :

Potential functions for naofluid and viscous fluid layer

\(\sigma \) :

Surface tension

References

  1. L. Rayleigh, Scientific Papers (Cambridge University Press, Cambridge, 1890), pp. 200–207

    Google Scholar 

  2. G.I. Taylor, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 201, 192–196 (1950)

    Google Scholar 

  3. D.J. Lewis, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 201, 81–96 (1950)

    Google Scholar 

  4. D.H. Sharp, Physica D 12, 3–18 (1984)

    Article  ADS  Google Scholar 

  5. J.W. Jacobs, I. Catton, J. Fluid Mech. 187, 329–352 (1988)

    Article  ADS  Google Scholar 

  6. H.J. Kull, Physics Reports 206, 197–325 (1991)

    Article  ADS  Google Scholar 

  7. J.L. Vinningland, R. Toussaint, M. Niebling, E.G. Flekkoy, K.J. Maloy, Eur. Phys. J. Special Topics 204, 27–40 (2012)

    Article  ADS  Google Scholar 

  8. G. Boffetta, A. Mazzino, Annu. Rev. Fluid Mech. 49, 119–43 (2017)

    Article  ADS  Google Scholar 

  9. K.O. Mikaelian, Physical Review E 99, 023112 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. D.D. Joseph, J. Belanger, G.S. Beavers, Int. J. Multiphase Flow 25, 1263–1303 (1999)

    Article  Google Scholar 

  11. D.D. Joseph, G.S. Beavers, T. Funada, J. Fluid Mechanics 453, 109–132 (2002)

    Article  ADS  Google Scholar 

  12. R. Asthana, M.K. Awasthi, G.S. Agrawal, App. Mech. Mat. 110–116, 769–775 (2012)

    Google Scholar 

  13. X.T. Wang, Z. Ning, M. Lu, Applied Mathematical Modelling 82, 636–648 (2020)

    Article  MathSciNet  Google Scholar 

  14. X.T. Wang, Z. Ning, M. Lu, European Journal of Mechanics / B Fluids 84, 350–356 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.M. Moatimid, M.A. Hassan, J. Egypt. Math. Society 25, 220–229 (2017)

    Article  Google Scholar 

  16. G.M. Moatimid, M. Gaber, J. Comp. Theo. Nanoscience 15, 1495–1510 (2018)

    Article  Google Scholar 

  17. G.M. Moatimid, M. Gaber, M.A.A. Mohamed, Microsystem Technologies 26, 2123–2136 (2020)

    Article  Google Scholar 

  18. G. Preet, S. Srivastava, Physics and Chemistry of Liquids: An International Journal 53(2), 174–186 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author M. K. A. is thankful to UGC-BSR (New-Delhi, India) (project No.F.30-442/2018 (BSR)) for start-up-grant and research funding.

Author information

Authors and Affiliations

Authors

Contributions

MKA: writing—original draft. ZU: conceptualization, methodology. RA: software, writing–review & editing.

Corresponding author

Correspondence to Mukesh Kumar Awasthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthi, M.K., Uddin, Z. & Asthana, R. Temporal instability of a power-law viscoelastic nanofluid layer. Eur. Phys. J. Spec. Top. 230, 1427–1434 (2021). https://doi.org/10.1140/epjs/s11734-021-00038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00038-8

Navigation