Skip to main content

Advertisement

Log in

Expoloriting of graphene oxide for improving physical properties of TiO2(NPs): toward photovoltaic devices and wastewater remediation approaches

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 10 February 2023

This article has been updated

Abstract

This work reports the impact of graphene oxide (GO) on titanium dioxide (TiO2)-based thin films. The obtained data represent a methodical investigation on the physical and dielectric characteristics of TiO2 nanoparticles (NPs) in solution mixed with different volumes of graphene oxide (0, 2, 4, 6 ml) and deposited on a glass substrate by spin coating. Our obtained nanocomposites films were characterized by FTIR, SEM, EDX, XRD, UV–Vis, thermogravimetric analysis and impedance spectroscopy (IS) techniques. The presence and disappearance of functional groups were confirmed by FTIR spectroscopy. SEM images displayed agglomerative surface and a remarkable correspondence between added content, the surface roughness and porosity of the films. The band gap energy of our GO–TiO2 nanocomposites decreased in the range of 3.2–2.2 eV. The impedance spectroscopy analysis revealed a semiconducting behavior of layers after annealing until 150 °C. The photocatalytic activities of GO–TiO2 nanocomposite were esteemed by degradation of methyl orange (MO) under UV-irradiation. Our results open up the opportunity for using the GO–TiO2 nanocomposite thin films as promising candidate in solar cells or photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors declare that all datasets supporting the findings of this study are available within the article.

Change history

References

  1. X. Yin, H. Huang, J. Xie, D. Dastan, J. Li, Y. Liu, X. Tan, X. Gao, W. Shah, X. Ma, Green Chem. Lett. Rev. 15(3), 546–556 (2022)

    Article  Google Scholar 

  2. I. Ashraf, S. Ahmad et al., Electrochim. Acta 429, 141036 (2022)

    Article  Google Scholar 

  3. I. Ashraf, S. Ahmad, F. Nazir et al., Int. J. Hydrog. Energy. 47, 27383–27396 (2022)

    Article  Google Scholar 

  4. X. Yin, W. Zhou, D. Dastan, J. Li, X. Tan, Y. Liu, X. Gao, X. Ma, Mater. Sci. Semicond. Process. 149, 106886 (2022)

    Article  Google Scholar 

  5. A. Alsulamei, A. Timoumi, Opt. Mater. X 15, 100176 (2022)

    Google Scholar 

  6. M. Han, Z. Shi, W. Zhang, K. Zhang, H. Wang et al., Compos. Part A 149, 106559 (2021)

    Article  Google Scholar 

  7. H. Wang, Z. Huang, X. Li, Y. Zhou, Q. Yu, W. Hu, Y. Wang, W. Zhuang, D. Dastan, J. Alloys Compd. 920, 166011 (2022)

    Article  Google Scholar 

  8. W. Zhang, X. Zhu, L. Liang, P. Yin, P. Xie, D. Dastan, K. Sun, R. Fan, Z. Shi, J. Mater. Sci. 56, 4254–4265 (2021)

    Article  ADS  Google Scholar 

  9. Y. Jiao, Z. Huang, W. Hu, X. Li, Q. Yu, Y. Wang, Y. Zhou et al., Mater. Sci. Eng. A. 820, 141 (2021)

    Article  Google Scholar 

  10. X.-T. Yin, J. Li, Q. Wang et al., Langmuir 37(46), 13548–13558 (2021)

    Article  Google Scholar 

  11. N. Haghnegahdar, M. Abbasi Tarighat, D. Dastan, J. Mater. Sci. Mater. Electron. 32, 5602–5613 (2021)

    Article  Google Scholar 

  12. X. Yin, S. Wu, D. Dastan, S. Nie, Y. Liu, Z. Li, Y. Zhou, J. Li, A. Faik, K. Shan, Z. Shi, M. Abbasi Tarighat, X. Ma, Surf. Interfaces 25, 101190 (2021)

    Article  Google Scholar 

  13. A. Saleem, N. Ullah, K. Khursheed, T. Iqbal, S.A. Shah, M. Asjad, M. Arshad, J. Electron. Mater. 47(7), 3749–3756 (2018)

    Article  ADS  Google Scholar 

  14. X. Zhao, Z. Wang, Y. Xie, X. Haiyang, Z. Jiaxue, Z. Xintong, L. Weizhen, Y. Guochun, M. Jiangang, L. Yichun, J. Small. 14(29), 1870136 (2018)

    Article  Google Scholar 

  15. R. Eglitis, A. Zukuls, R. Viter, A. Šutka, J. Photochem. Photobiol. Sci. 19(8), 1072–1077 (2020)

    Article  Google Scholar 

  16. W. Vallejo, A. Rueda, C. Díaz-Uribe, C. Grande, P. Quintana, J. R. Soc. Open Sci. 6(3), 181824 (2019)

    Article  ADS  Google Scholar 

  17. H. Xu, M. Ding, S. Liu, Y. Li, Z. Shen, K. Wang, J. Polym. 117, 198–207 (2017)

    Article  Google Scholar 

  18. K. Biju, M. Jain, Meas. Sci. Technol. 18(9), 2991–2996 (2007)

    Article  ADS  Google Scholar 

  19. W. Belhadj, A. Timoumi, F.A. Alamer, O.H. Alsalmi, S.N. Alamri, Res. Phys 30, 104867 (2021)

    Google Scholar 

  20. A. Ahmed, T. Ahamad, N. Ahmad, M. Khan, J. Mater. Chem. Phys. 238, 121906 (2019)

    Article  Google Scholar 

  21. N. Lv, Y. Li, Z. Huang, T. Li, S. Ye, D.D. Dionysiou, X. Song, J. Appl. Catal. B Environ. 246, 303–311 (2019)

    Article  Google Scholar 

  22. A. Azani, D.S. Che Halin, K.A. Razak, M.M.B. Abdullah, M.A.A.M. Salleh, N. Mahmed, V. Chobpattana, I.O.P. Conf, Ser. Mater. Sci. Eng. 572, 012079 (2019)

    Google Scholar 

  23. A. Mohan Das Gandhi, K. Soorya Prakash, V. Kavimani, J. Anti Corros. Methods Mater. 65(4), 375–382 (2018)

    Article  Google Scholar 

  24. P. Rani, A. Ghorai, S. Roy, D. Goswami, A. Midya, S. Ray, J. Mater. Res. Express. 6(12), 125546 (2020)

    Article  Google Scholar 

  25. B. Satheesan, A. Mohammed, J. Wear. 466–467, 203560 (2021)

    Article  Google Scholar 

  26. S. Saadi, B. Nazari, J. Compos. Compd. 1(1), 34–38 (2019)

    Google Scholar 

  27. G.H. Jetani, M. Rahmani, EPJ. Plus 135(9), 1–21 (2020)

    Google Scholar 

  28. O. Akhavan, E. Ghaderi, J. Nanoscale. 5(21), 10316 (2013)

    Article  ADS  Google Scholar 

  29. P. Conti, E. Scopel, E. Leite, C. Dalmaschio, J. Mater. Res. 35(21), 3012–3020 (2020)

    Article  ADS  Google Scholar 

  30. P. Deb, J. Dhar, J. IEEE Photonics Technol. Lett. 31(8), 571–574 (2019)

    Article  ADS  Google Scholar 

  31. X. Dong, X. Liang, Y. Zhou, K. Bao, D.E. Sameen, S. Ahmed, Y. Liu, J. Biol. Macromol. 177, 135–148 (2021)

    Article  Google Scholar 

  32. D. Elahe, H. Alireza, J. Clin. Med. Rev. Case Rep. 5(8), 228 (2018)

    Google Scholar 

  33. Z. Jie, X. Xiao, Y. Huan, H. Youkang, Z. Zhiyao, J. Environ. Technol. 42(2), 193–205 (2019)

    Article  Google Scholar 

  34. A. Kumar, L. Rout, L. Achary, A. Mohanty, R. Dhaka, P. Dash, RSC Adv. 6(38), 32074–32088 (2016)

    Article  ADS  Google Scholar 

  35. W. Liu, X. Yan, Q. Xue, J. Mater. Chem. C 1(7), 1413 (2013)

    Article  ADS  Google Scholar 

  36. R. Mathew, S. Kanmani, J. Water Pract. Technol. 15(3), 645–651 (2020)

    Article  Google Scholar 

  37. A. Timoumi, S.N. Alamri, H. Alamri, Res. Phys. 11, 46–51 (2018)

    Google Scholar 

  38. M. Aziz, N.F.T. Arifin, W.J. Lau, Malays. J. Anal. Sci. 23(3), 479–487 (2019)

    Google Scholar 

  39. M. Rezaei, S. Salem, Int. J. Chem. Kinet. 48(10), 573–583 (2016)

    Article  Google Scholar 

  40. R. Singh, R. Kumar, A. Kumar, D. Kumar, M. Kumar, J. Mater. Res. Express. 6(10), 105621 (2019)

    Article  ADS  Google Scholar 

  41. R. Singh, R. Kumar, A. Kumar, D. Kumar, M. Kumar, J. Elect. Mater. 49(8), 4872–4881 (2020)

    Article  ADS  Google Scholar 

  42. J. Vidya, P. Balamurugan, J. Desalin. Water Treat. 156, 349–356 (2019)

    Article  Google Scholar 

  43. S.A. Kazmi, S. Hameed, A.S. Ahmed, M. Arshad, A. Azam, J. Alloys Compd. 691, 659–665 (2017)

    Article  Google Scholar 

  44. W. Low, V. Boonamnuayvitaya, J. Environ. Manag. 127, 142–149 (2013)

    Article  Google Scholar 

  45. C.G. Silva, J.L. Faria, J. Photochem. Photobiol. Sci. 8(5), 705 (2009)

    Article  Google Scholar 

  46. L. Hongbin, Z. Youzhen, V. Sascha, T. Shaochun, M. Xiangkang, J. Sci. China Technol. Sci. 55(4), 894–902 (2012)

    Article  Google Scholar 

  47. M.H.H. Ali, A.D. Al-Afify, M.E. Goher, Egypt. J. Aquat. Res. 44, 263–270 (2018)

    Article  Google Scholar 

  48. M. Sharma, Nihal. J. Mater. Today Proc. 26, 3390–3396 (2020)

    Article  Google Scholar 

  49. X. Qiu, Z. Hong, J. Hu, L. Chen, X. Chen, X. Jing, J. Biomacromol. 6, 1193–1199 (2005)

    Article  Google Scholar 

  50. S.J. Bu, Z.G. Jin, X.X. Liu, L.R. Yang, Z.J. Cheng, J. Eur. Ceram. Soc. 25(5), 673–679 (2005)

    Article  Google Scholar 

  51. R. Rahimi, S. Zargari, Z. S. Shojaei, MDPI Conference Paper. (2014).

  52. A. Wiatrowski, M. Mazur, A. Obstarczyk, J. Coat. 8(11), 412 (2018)

    Article  Google Scholar 

  53. S.H. Nam, S.J. Cho, J.H. Boo, J. Nanoscale Res. Lett. 7(1), 1–6 (2012)

    Article  Google Scholar 

  54. D. Susanti, M. Nafi, H. Purwaningsih, R. Fajarin, G.E. Kusuma, Proc. Chem. 9, 3–10 (2013)

    Article  Google Scholar 

  55. A. Timoumi, H. Albetran, H. Alamri, S. Alamri, I. Low, J. Superlattices Microstruct. 139, 106423 (2020)

    Article  Google Scholar 

  56. C. Dette, M.A. Pérez-Osorio, C.S. Kley, P. Punke, C.E. Patrick, P. Jacobson, K. Kern, J. ACS Nano Lett. 14, 6533–6538 (2014)

    Article  ADS  Google Scholar 

  57. H. Saleem, A. Habib, J. Alloys Compd. 679, 177–183 (2016)

    Article  Google Scholar 

  58. J. Aljuaid, A. Timoumi, S.N. Alamri, Opt. Mater. X, 100178 (2022).

  59. E.T. Bekele, B.A. Gonfa, O.A. Zelekew, H.H. Belay, F.K. Sabir, J. Nanomater. 2020, 1–10 (2020)

    Article  Google Scholar 

  60. M. Lal, V. Chhabra, P. Ayyub, A. Maitra, J. Mater. Res. 13(5), 1249–1254 (1998)

    Article  ADS  Google Scholar 

  61. D. Tejero-Martin, Z. Pala, S. Rushworth, T. Hussain, J. Ceram. Int. 46(4), 5098–5108 (2020)

    Article  Google Scholar 

  62. D. Liu, J. Yang, T. Kelly, J. Am. Chem. Soc. 136(49), 17116–17122 (2014)

    Article  Google Scholar 

  63. M.R. Meghana, A.H. Deepa, R. Ravishankar, Int. J. Eng. Res. Technol. 8, 675–680 (2019)

    Google Scholar 

  64. R. T. Bento, M. F. Pillis, (Chapter 11) 211–225 (2018).

  65. P.P. Subha, M.K. Jayaraj, J. Exp. Nanosci. 10, 1106–1115 (2015)

    Article  Google Scholar 

  66. M. Pirsaheb, H. Hossaini, S. Nasseri, N. Azizi, B. Shahmoradi, T. Khosravi, J. Nanostruct. Chem. 10, 143–159 (2020)

    Article  Google Scholar 

  67. C.-J. Cai, M.-W. Xu, S.-J. Bao, C.-C. Ji, Z.-J. Lu, D.-Z. Jia, Nanotechnology 24, 275602 (2013)

    Article  Google Scholar 

  68. M.H.H. Ali, A.D. Al-Afify, M.E. Goher, Egypt. J. Aquat. Res. 44, 263–270 (2018)

    Article  Google Scholar 

  69. M.N. Rashed, A.A. El-Amin, Int. J. Phys. Sci. 2, 73–81 (2007)

    Google Scholar 

  70. A. Fujishima, X. Zhangb, D.A. Tryk, Surf. Sci. Rep. 63, 515–582 (2008)

    Article  ADS  Google Scholar 

  71. M. Masahiko, W. Teruyoshi, Surf. Coat. Tech. 201, 9309–9312 (2007)

    Article  Google Scholar 

  72. C.G. Silva, J.L. Faria, J. Mol. Catal. A Chem. 305, 147154 (2009)

    Article  Google Scholar 

  73. S. Chin, E. Park, M. Kim, J. Jurng, Powder Technol. 201, 171–176 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4331235DSR02).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to manuscript preparation.

Corresponding authors

Correspondence to A. Timoumi, N. El Guesmi or W. Belhadj.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

The original online version of this article was revised to correct author name to K. Althagafy and put Fig. 2-13 into the right order.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alameer, O.O., Timoumi, A., El Guesmi, N. et al. Expoloriting of graphene oxide for improving physical properties of TiO2(NPs): toward photovoltaic devices and wastewater remediation approaches. Eur. Phys. J. Plus 137, 1160 (2022). https://doi.org/10.1140/epjp/s13360-022-03289-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03289-z

Navigation