Skip to main content
Log in

Total qubit efficiency of quantum key distribution protocol: definition and application

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The paper reports a revision to the definition of efficiency (or qubit efficiency) of a quantum key distribution (QKD) protocol, which is called total qubit efficiency. The revised efficiency is introduced as a quantity proportional to the Shannon’s information conveyed by a single qubit. This definition takes into account the processes performed in a standard quantum key distribution protocol: transfer, sifting, parameter estimation, key reconciliation, and privacy amplification. Furthermore, we apply the newly proposed total qubit efficiency for the sake of evaluation and comparison of different QKD schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bennett, G. Brassard, Proceedings of IEEE International conference on computers, systems, and signal processing (IEEE, Bangalore 1984) 175-179

  2. A. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Bennett, G. Brassard, N. Mermin, Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Bennett, Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002)

    Article  ADS  Google Scholar 

  6. D. Stucki, N. Brunner, N. Gisin, V. Scarani, H. Zbinden, Appl. Phys. Lett. 87, 194108 (2005)

    Article  ADS  Google Scholar 

  7. V. Scarani, H. Bellchmann-Pasquinucci, N. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  8. F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan, Rev. Mod. Phys. 92, 025002 (2020)

    Article  ADS  Google Scholar 

  9. S. Pirandola et al., Adv. Opt. Photon. 12, 1012 (2020)

    Article  Google Scholar 

  10. H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  11. D. Mayers, A.C.-C. Yao, Proceedings of the 39th Annual Symposium on Foundations of Computer Science(FOCS98) (IEEE Computer Society, Washington, DC, 1998) 503

  12. A. Acín et al., Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  13. H.-K. Lo, H.F. Chau, Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  14. H.-L. Yin et al., Phys. Rev. Lett. 117, 190501 (2016)

    Article  ADS  Google Scholar 

  15. Y. Fu, H.-L. Yin, T.-Y. Chen, Z.-B. Chen, Phys. Rev. Lett. 114, 090501 (2015)

    Article  ADS  Google Scholar 

  16. H.-L. Yin, W.-F. Cao, Y. Fu, Y.-L. Tang, Y. Liu, T.-Y. Chen, Z.-B. Chen, Opt. Lett. 39, 5451 (2014)

    Article  ADS  Google Scholar 

  17. Y. Jo, W. Son, Phys. Rev. A 94, 052316 (2016)

    Article  ADS  Google Scholar 

  18. L. Dellantonio, A. Sørensen, D. Bacco, Phys. Rev. A 98, 062301 (2018)

    Article  ADS  Google Scholar 

  19. F. Xu, Phys. Rev. A 92, 012333 (2015)

    Article  ADS  Google Scholar 

  20. Y. Zhao, Y. Zhang, B. Xu, S. Yu, H. Guo, Phys. Rev. A 97, 042328 (2018)

    Article  ADS  Google Scholar 

  21. C.-M. Zhang et al., Phys. Rev. A 90, 034302 (2014)

    Article  ADS  Google Scholar 

  22. H. Liu et al., Phys. Rev. Lett. 122, 160501 (2019)

    Article  ADS  Google Scholar 

  23. H.-X. Ma et al., Phys. Rev. A 97, 042329 (2018)

    Article  ADS  Google Scholar 

  24. C. Zhou et al., Phys. Rev. A 91, 022313 (2015)

    Article  ADS  Google Scholar 

  25. Y.-C. Zhang, Z. Li, S. Yu, W. Gu, X. Peng, H. Guo, Phys. Rev. A 90, 052325 (2014)

    Article  ADS  Google Scholar 

  26. I. Puthoor, R. Amiri, P. Wallden, M. Curty, E. Andersson, Phys. Rev. A 94, 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. C.-H. Zhang, C.-M. Zhang, Q. Wang, Phys. Rev. A 99, 052325 (2019)

    Article  ADS  Google Scholar 

  28. W.-F. Cao et al., Phys. Rev. 97, 012313 (2018)

    Article  Google Scholar 

  29. Y.-Z. Shan et al., Phys. Rev. A 90, 042334 (2014)

    Article  ADS  Google Scholar 

  30. X. Yang et al., Phys. Rev. A 93, 052303 (2016)

    Article  ADS  Google Scholar 

  31. S. Abruzzo, H. Kampermann, D. Bruß, Phys. Rev. A 89, 012301 (2014)

    Article  ADS  Google Scholar 

  32. Y. Wu, J. Zhou, X. Gong, Y. Guo, Z.-M. Zhang, G. He, Phys. Rev. A 93, 022325 (2016)

    Article  ADS  Google Scholar 

  33. N. Islam, High-Rate, high-dimensional quantum key distribution systems (Springer Theses, Springer Nature Switzerland AG, 2018)

  34. M. Erhard, R. Fickler, M. Krenn, A. Zeilinger, Light Sci. Appl. 7, 17146 (2018)

    Article  Google Scholar 

  35. M. Lucamarini, Z. Yuan, J. Dynes, A. Shields, Nature 557, 400 (2018)

    Article  ADS  Google Scholar 

  36. H.-L. Yin, Y. Fu, Sci. Rep. 9, 3045 (2019)

    Article  ADS  Google Scholar 

  37. H.-L. Yin, Z.-B. Chen, Sci. Rep. 9, 14918 (2019)

    Article  ADS  Google Scholar 

  38. G.L. Long, X.S. Liu, Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  39. F.G. Deng, G.L. Long, X.S. Liu, Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  40. C. Wang, F. Deng, Y. Li, X. Liu, G. Long, Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  41. F.G. Deng, G.L. Long, Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  42. A. Banerjee, A. Pathak, Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  43. C.W. Tsai, C.R. Hsieh, T. Hwang, Eur. Phys. J. D 61, 783 (2011)

    Article  ADS  Google Scholar 

  44. P.-H. Niu et al., Sci. Bulletin 63, 1345–1350 (2018)

    Article  ADS  Google Scholar 

  45. Z.R. Zhou et al., Sci. China Phys. Mech. Astron. 63, 230362 (2020)

    Article  ADS  Google Scholar 

  46. J. Wu et al., Quantum Eng. https://doi.org/10.1002/que2.26 (2019)

  47. C. Wang, Fundam. Res. 1, 91–92 (2021)

    Article  Google Scholar 

  48. S. Hassanpour, M. Houshmand, QIP 14, 739 (2014)

    Google Scholar 

  49. D. Joy, S. Surendran, M. Sabir, QIP 16, 1 (2017)

    Google Scholar 

  50. F. Yan, X. Zhang, Eur. Phys. J. B 41, 75 (2004)

    Article  ADS  Google Scholar 

  51. T. Gao, F. Yan, X. Wang, Chin. Phys. 14, 893 (2005)

    Article  Google Scholar 

  52. A. Zhu, Y. Xia, Q. Fan, S. Zhang, Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  53. A. Pathak, QIP 14, 2195 (2015)

    Google Scholar 

  54. Z. Cao, Y. Li, J. Peng, G. Chai, G. Zhao, Int. J. Theor. Phys. 57, 3632 (2018)

    Article  Google Scholar 

  55. L.-H. Gong et al., Phys. Scr. 89, 035101 (2014)

    Article  ADS  Google Scholar 

  56. N.-R. Zhou, K.-N. Zhu, X.-F. Zou, Annalen Der Physik 531, 1800520 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. M. Hillery, V. Bužek, A. Berthiaume, Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  58. J. Gu, X.-Y. Cao, H.-L. Yin, Z.-B. Chen, Opt. Express 29, 9165 (2021)

    Article  ADS  Google Scholar 

  59. J. Gu, Y.-M. Xie, W.-B. Liu, Y. Fu, H.-L. Yin, Z.-B. Chen, Opt. Express 29, 32244 (2021)

    Article  ADS  Google Scholar 

  60. Z.-Y. Jia, J. Gu, B.-H. Li, H.-L. Yin, Z.-B. Chen, Entropy 23, 716 (2021)

    Article  ADS  Google Scholar 

  61. X.-Y. Cao, J. Gu, Y.-S. Lu, H.-L. Yin, Z.-B. Chen, New J. Phys. 23, 043002 (2021)

    Article  ADS  Google Scholar 

  62. X.-Y. Cao, Y.-S. Lu, Z. Li, J. Gu, H.-L. Yin, Z.-B. Chen, IEEE Access 9, 128870 (2021)

    Article  Google Scholar 

  63. Z. Li, X.-Y. Cao, C.-L. Li, C.-X. Weng, J. Gu, H.-L. Yin, Z.-B. Chen, Quantum. Sci. Technol. 6, 045019 (2021)

    Article  ADS  Google Scholar 

  64. G. Bebrov, Quant. Inf. Process. 20, 296 (2021)

    Article  MathSciNet  Google Scholar 

  65. A. Cabello, Phys. Rev. Lett. 85, 5635–5638 (2001)

    Article  ADS  Google Scholar 

  66. T. Hwang, C. Hwang, C. Tsai, Eur. Phys. J. D 61, 785–790 (2011)

    Article  ADS  Google Scholar 

  67. C. Shannon, Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  Google Scholar 

  68. Mehic, M. Niemiec, M., Siljak, H., Voznak, M.: In: I. Ulidowski, I. Lanese, U. Schultz, C. Ferreira, (eds) Reversible Computation: Extending Horizons of Computing. RC 2020. Lecture Notes in Computer Science 12070, Springer, Cham. 222–235 (2020)

  69. M. Mehic, M. Niemiec, M. Voznak, ELEKTRONIKA IR ELEKTROTECHNIKA 21(6), 81–85 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the project \(\hbox {K}\Pi \)-06-H37/1 /06.12.2019, funded by National Science Fund, Ministry of Education and Science, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Bebrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebrov, G. Total qubit efficiency of quantum key distribution protocol: definition and application. Eur. Phys. J. Plus 137, 169 (2022). https://doi.org/10.1140/epjp/s13360-022-02353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02353-y

Navigation