Skip to main content
Log in

Numerical investigation of the effect of a porous block and flow injection using non-Newtonian nanofluid on heat transfer and entropy generation in a microchannel with hydrophobic walls

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The microchannel cooling technology is an efficient procedure for dissipating heat from high-power devices. In this research, forced convective and entropy generation of a non-Newtonian fluid (water) with 1% and 3% volume fraction of nanoadditives (Al2O3) are investigated in a two-dimensional microchannel. Three configurations for microchannel are considered in this examination to investigate the effect of different Reynolds numbers of injection (25, 37.5, and 50), Darcy numbers (0.01, 0.005, and 0.001), and velocity boundary conditions (hydrophobic and superhydrophobic) on dimensionless velocity, dimensionless temperature, Nusselt number, and entropy generation. Microchannel in case A equipped with an injection in case B and both injection and the porous block in case C. The results show more relative Reynolds number and nanoparticle concentrations and less the Darcy number cause higher dimensionless velocity around the hot wall and the Nusselt number, which is beneficial. The same changes in velocity and temperature can be seen by applying superhydrophobic boundary conditions instead of hydrophobic due to less impact of the solid walls on the flow. The Nusselt number can be increased up to 128.86% in case C. Frictional entropy generation raises by the considerable amount of 461.62% in the presence of porous media. In comparison, this amount is just 133.47% for thermal entropy generation. However, entropy generation analysis shows thermal entropy generation is considerably more than frictional entropy generation; thus, it has a dominant role in calculating total entropy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

x :

Horizontal axis, m

y :

Vertical axis, m

L :

Microchannel length, m

h :

Microchannel height, m

u :

Horizontal velocity component, m/s

v :

Vertical velocity component, m/s

P :

Pressure, Pa

K :

Permeability, m2

K * :

Permeability of modified, m2

n :

Power-law factor

C F :

Inertia factor

T :

Temperature, K

k r :

Relative proportion of the porous media thermal conductivity to the thermal conductivity of nanofluid

X D :

Exergy losses, W

S :

Entropy generation rate, W/K

\(\dot{S}\) :

Local volumetric entropy generation, W/K m3

Nu:

Nusselt number

Pr:

Prandtl number

Da:

Darcy number

Re:

Reynolds number

D h :

Hydraulic diameter of microchannel = 2h, m

k :

Thermal conductivity, W/m K

C p :

Specific heat, J/kg K

H :

Dimensionless length of the microchannel

Y :

Dimensionless vertical axis

X :

Dimensionless horizontal axis

U :

Dimensionless horizontal velocity

V :

Dimensionless vertical velocity

\(\beta *\) :

No dimension of slip velocity coefficient

\(\mu *\) :

Consistency factor, Pa sn

\(\theta\) :

No dimension of temperature

\(\beta\) :

Slip velocity index

ε :

Porosity

φ :

Nanoparticle volume fraction

\(\gamma\) :

Shear rate

\(\rho\) :

Density, kg/m3

pp:

Porous particles

out:

Outlet

in:

Inlet

h:

Hot

c:

Cold

s:

Slip

f:

Fluid

fr:

Frictional

e:

Effective

t:

Thermal

np:

Nanoparticle

max:

Maximum

nf:

Nanofluid

References

  1. S.A. Bagherzadeh, B. Ruhani, M.M. Namar, R. Alamian, S. Rostami, Compression ratio energy and exergy analysis of a developed Brayton-based power cycle employing CAES and ORC. J. Therm. Anal. Calorim. 139(4), 2781–2790 (2020)

    Article  Google Scholar 

  2. Y. Cao, A. Doustgani, A. Salehi, M. Nemati, A. Ghasemi, O. Koohshekan, The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: case study Iran. Energy 213, 118760 (2020)

    Article  Google Scholar 

  3. A. Salehi, A. Karbassi, B. Ghobadian, A. Ghasemi, A. Doustgani, Simulation process of biodiesel production plant. Environ. Prog. Sustain. Energy 38(6), e13264 (2019)

    Article  Google Scholar 

  4. S.A.M. Mehryan, A. Alsabery, A. Modir, E. Izadpanahi, M. Ghalambaz, Fluid-structure interaction of a hot flexible thin plate inside an enclosure. Int. J. Therm. Sci. 153, 106340 (2020)

    Article  Google Scholar 

  5. A. Veismoradi, A. Modir, M. Ghalambaz, A. Chamkha, A phase change/metal foam heatsink for thermal management of battery packs. Int. J. Therm. Sci. 157, 106514 (2020)

    Article  Google Scholar 

  6. M. Mozafarifard, D. Toghraie, Time-fractional subdiffusion model for thin metal films under femtosecond laser pulses based on Caputo fractional derivative to examine anomalous diffusion process. Int. J. Heat Mass Transf. 153, 119592 (2020)

    Article  Google Scholar 

  7. M. Samadifar, D. Toghraie, Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators. Appl. Therm. Eng. 133, 671–681 (2018)

    Article  Google Scholar 

  8. S.H.T. Karim, T.A. Tofiq, M. Shariati, H.N. Rad, A. Ghasemi, 4E analyses and multi-objective optimization of a solar-based combined cooling, heating, and power system for residential applications. Energy Rep. 7, 1780–1797 (2021)

    Article  Google Scholar 

  9. S.M. Mortazavinejad, M. Mozafarifard, Numerical investigation of two-dimensional heat transfer of an absorbing plate of a flat-plate solar collector using dual-reciprocity method based on boundary element. Sol. Energy 191, 332–340 (2019)

    Article  ADS  Google Scholar 

  10. A.H. Pordanjani, S.M. Vahedi, S. Aghakhani, M. Afrand, O. Mahian, L.-P. Wang, Multivariate optimization and sensitivity analyses of relevant parameters on efficiency of scraped surface heat exchanger. Appl. Therm. Eng. 178, 115445 (2020)

    Article  Google Scholar 

  11. A. Shiriny, M. Bayareh, A.A. Nadooshan, D. Bahrami, Forced convection heat transfer of water/FMWCNT nanofluid in a microchannel with triangular ribs. SN Appl. Sci. 1(12), 1–11 (2019)

    Article  Google Scholar 

  12. K. Hooman, A. Tamayol, M. Dahari, M.R. Safaei, H. Togun, R. Sadri, A theoretical model to predict gas permeability for slip flow through a porous medium. Appl. Therm. Eng. 70(1), 71–76 (2014)

    Article  Google Scholar 

  13. A. Malvandi, M.R. Safaei, M.H. Kaffash, D.D. Ganji, MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration. J. Magn. Magn. Mater. 382, 296–306 (2015)

    Article  ADS  Google Scholar 

  14. D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI. IEEE Electron Device Lett. 2(5), 126–129 (1981)

    Article  ADS  Google Scholar 

  15. C.B. Sobhan, S.V. Garimella, A comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophys. Eng. 5(4), 293–311 (2001)

    Article  Google Scholar 

  16. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (1995)

  17. A.R. Gheynani et al., Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube. Int. J. Numer. Methods Heat Fluid Flow (2019)

  18. D. Toghraie, M. Mahmoudi, O.A. Akbari, F. Pourfattah, M. Heydari, The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. J. Therm. Anal. Calorim. 135(1), 145–159 (2019)

    Article  Google Scholar 

  19. D.S. Toghraie, N. Sina, M. Mozafarifard, A. ad Alizadeh, F. Soltani, M.A. Fazilati, Prediction of dynamic viscosity of a new non-Newtonian hybrid nanofluid using experimental and artificial neural network (ANN) methods. Heat Transf. Res. 51(15) (2020)

  20. R. Pourrajab, A. Noghrehabadi, M. Behbahani, Development of Cu/mesoporous SBA-15 nanocomposite in ethylene glycol for thermal conductivity enhancement: heat transfer applications. Int. Commun. Heat Mass Transf. 119, 104931 (2020)

    Article  Google Scholar 

  21. R. Pourrajab, A. Noghrehabadi, E. Hajidavalloo, M. Behbahani, Investigation of thermal conductivity of a new hybrid nanofluids based on mesoporous silica modified with copper nanoparticles: Synthesis, characterization and experimental study. J. Mol. Liq. 300, 112337 (2020)

    Article  Google Scholar 

  22. R. Pourrajab, A. Noghrehabadi, M. Behbahani, E. Hajidavalloo, An efficient enhancement in thermal conductivity of water-based hybrid nanofluid containing MWCNTs-COOH and Ag nanoparticles: experimental study. J. Therm. Anal. Calorim. 1–13 (2020)

  23. M.R. Saffarian, M. Moravej, M.H. Doranehgard, Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew. Energy 146, 2316–2329 (2020)

    Article  Google Scholar 

  24. M.R. Safaei, M. Gooarzi, O.A. Akbari, M.S. Shadloo, M. Dahari, Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications. Electron. Cool. 832 (2016)

  25. O.A. Akbari et al., A modified two-phase mixture model of nanofluid flow and heat transfer in a 3-D curved microtube. Adv. Powder Technol. 27(5), 2175–2185 (2016)

    Article  Google Scholar 

  26. M. Mozafarifard, D. Toghraie, Numerical analysis of time-fractional non-Fourier heat conduction in porous media based on Caputo fractional derivative under short heating pulses. Heat Mass Transf. 56(11), 3035–3045 (2020)

    Article  ADS  Google Scholar 

  27. M. Mozafarifard, D. Toghraie, H. Sobhani, Numerical study of fast transient non-diffusive heat conduction in a porous medium composed of solid-glass spheres and air using fractional Cattaneo subdiffusion model. Int. Commun. Heat Mass Transf. 122, 105192 (2021)

    Article  Google Scholar 

  28. A. Abdehkakha, A.L. Hammond, T.R. Patel, A.H. Siddiqui, G. Dargush, H. Meng, Cerebral Aneurysm Flow Diverter Modeled as a Thin Inhomogeneous Porous Medium in Hemodynamic Simulations. http://arxiv.org/abs/2106.05994 (2021)

  29. T. Gan et al., Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets. J. Therm. Anal. Calorim. 141, 45–56 (2020)

    Article  Google Scholar 

  30. R. Zhang, S. Aghakhani, A.H. Pordanjani, S.M. Vahedi, A. Shahsavar, M. Afrand, Investigation of the entropy generation during natural convection of Newtonian and non-Newtonian fluids inside the L-shaped cavity subjected to magnetic field: application of lattice Boltzmann method. Eur. Phys. J. Plus 135(2), 184 (2020)

    Article  Google Scholar 

  31. A.H. Pordanjani, S.M. Vahedi, S. Aghakhani, M. Afrand, H.F. Öztop, N. Abu-Hamdeh, Effect of magnetic field on mixed convection and entropy generation of hybrid nanofluid in an inclined enclosure: sensitivity analysis and optimization. Eur. Phys. J. Plus 134(8), 1–20 (2019)

    Article  Google Scholar 

  32. E. Jalali, A. Karimipour, Simulation the effects of cross-flow injection on the slip velocity and temperature domain of a nanofluid flow inside a microchannel. Int. J. Numer. Methods Heat Fluid Flow (2019)

  33. A. Shiriny, M. Bayareh, A.A. Nadooshan, Nanofluid flow in a microchannel with inclined cross-flow injection. SN Appl. Sci. 1(9), 1–8 (2019)

    Article  Google Scholar 

  34. E. Jalali, O. Ali Akbari, M.M. Sarafraz, T. Abbas, M.R. Safaei, Heat transfer of oil/MWCNT nanofluid jet injection inside a rectangular microchannel. Symmetry 11(6), 757 (2019)

    Article  Google Scholar 

  35. L. Yang, K. Du, Numerical simulation of nanofluid flow and heat transfer in a microchannel: the effect of changing the injection layout arrangement. Int. J. Mech. Sci. 172, 105415 (2020)

    Article  Google Scholar 

  36. D. Bahrami, S. Abbasian-Naghneh, A. Karimipour, A. Karimipour, Efficacy of injectable rib height on the heat transfer and entropy generation in the microchannel by affecting slip flow. Math. Methods Appl. Sci. (2020)

  37. A. Shahsavar, A. Godini, P.T. Sardari, D. Toghraie, H. Salehipour, Impact of variable fluid properties on forced convection of Fe 3 O 4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J. Therm. Anal. Calorim. 137(3), 1031–1043 (2019)

    Article  Google Scholar 

  38. A.R. Rahmati, O.A. Akbari, A. Marzban, D. Toghraie, R. Karimi, F. Pourfattah, Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions. Therm. Sci. Eng. Prog. 5, 263–277 (2018)

    Article  Google Scholar 

  39. A.A.A.A. Al-Rashed, A. Shahsavar, S. Entezari, M.A. Moghimi, S.A. Adio, T.K. Nguyen, Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations. Appl. Therm. Eng. 155, 247–258 (2019)

    Article  Google Scholar 

  40. E. Manay, E.F. Akyürek, B. Sahin, Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys. 9, 615–624 (2018)

    Article  ADS  Google Scholar 

  41. J. Li, Z. Zhu, L. Zhao, H. Peng, Experimental investigation of the heat transfer and flow characteristics of microchannels with microribs. Int. J. Heat Mass Transf. 143, 118482 (2019)

    Article  Google Scholar 

  42. M. Aliakbari, Numerical investigation of heat transfer of nanofluids in a channel under the influence of porous area. J. Fundam. Appl. Sci. 9, 1175–1188 (2017)

    Google Scholar 

  43. M.Z. Saghir, C. Welsford, Forced convection in porous media using Al2O3 and TiO2 nanofluids in differing base fluids. Energies 13(10), 2665 (2020)

    Article  Google Scholar 

  44. E. Gholamalizadeh, F. Pahlevanzadeh, K. Ghani, A. Karimipour, T.K. Nguyen, M.R. Safaei, Simulation of water/FMWCNT nanofluid forced convection in a microchannel filled with porous material under slip velocity and temperature jump boundary conditions. Int. J. Numer. Methods Heat Fluid Flow (2019)

  45. R.D. Plant, G.K. Hodgson, S. Impellizzeri, M.Z. Saghir, Experimental and numerical investigation of heat enhancement using a hybrid nanofluid of copper oxide/alumina nanoparticles in water. J. Therm. Anal. Calorim. 141(5), 1951–1968 (2020)

    Article  Google Scholar 

  46. M. Neyestani, M. Nazari, M.M. Shahmardan, M. Sharifpur, M. Ashouri, J.P. Meyer, Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids. J. Therm. Anal. Calorim. 138(1), 805–817 (2019)

    Article  Google Scholar 

  47. C.S. Delisle, C.A. Welsford, M.Z. Saghir, Forced convection study with microporous channels and nanofluid: experimental and numerical. J. Therm. Anal. Calorim. 140, 1205–1214 (2020)

    Article  Google Scholar 

  48. F. Li, Q. Ma, G. Xin, J. Zhang, X. Wang, Heat transfer and flow characteristics of microchannels with solid and porous ribs. Appl. Therm. Eng. 178, 115639 (2020)

    Article  Google Scholar 

  49. X.-W. Tian, S.-M. Xu, Z.-H. Sun, P. Wang, L. Xu, Z. Zhang, Experimental study on flow and heat transfer of power law fluid in structured packed porous media of particles. Exp. Therm. Fluid Sci. 90, 37–47 (2018)

    Article  Google Scholar 

  50. K. Hosseinzadeh, A. Asadi, A.R. Mogharrebi, J. Khalesi, S. Mousavisani, D.D. Ganji, Entropy generation analysis of (CH2OH) 2 containing CNTs nanofluid flow under effect of MHD and thermal radiation. Case Stud. Therm. Eng. 14, 100482 (2019)

    Article  Google Scholar 

  51. M.R. Saffarian, F. Jamaati, A. Mohammadi, F.G. Malekabad, K.A. Ayoubloo, Investigating the entropy generation around an airfoil in turbulent flow. Aircr. Eng. Aerosp. Technol. 92(7), 1001–1017 (2020)

    Article  Google Scholar 

  52. G.M. Moldoveanu, G. Huminic, A.A. Minea, A. Huminic, Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf. 127, 450–457 (2018)

    Article  Google Scholar 

  53. A. Abdollahi, H.A. Mohammed, S.M. Vanaki, A. Osia, M.R.G. Haghighi, Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. Alexandria Eng. J. 56(1), 161–170 (2017)

    Article  Google Scholar 

  54. A.A. Minea, Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int. J. Heat Mass Transf. 104, 852–860 (2017)

    Article  Google Scholar 

  55. S.M. Vahedi, A.H. Pordanjani, S. Wongwises, M. Afrand, On the role of enclosure side walls thickness and heater geometry in heat transfer enhancement of water–Al2O3 nanofluid in presence of a magnetic field. J. Therm. Anal. Calorim. 138(1), 679–696 (2019)

    Article  Google Scholar 

  56. A.V Shenoy, Non-Newtonian fluid heat transfer in porous media. in Advances in Heat transfer, vol. 24 (Elsevier, 1994), pp. 101–190

  57. R. Nebbali, K. Bouhadef, Non-Newtonian fluid flow in plane channels: heat transfer enhancement using porous blocks. Int. J. Therm. Sci. 50(10), 1984–1995 (2011)

    Article  Google Scholar 

  58. D.A. Nield, A. Bejan, et al. Convection in Porous Media, vol. 3 (Springer, 2006)

  59. R.V. Dharmadhikari, D.D. Kale, Flow of non-Newtonian fluids through porous media. Chem. Eng. Sci. 40(3), 527–529 (1985)

    Article  Google Scholar 

  60. G. Chen, H.A. Hadim, Numerical study of non-Darcy forced convection in a packed bed saturated with a power-law fluid. J. Porous Media 1(2), 147–157 (1998)

    MATH  Google Scholar 

  61. A. Bejan, Entropy Generation Through Heat and Fluid Flow, vol. 1 (Wiley, New York, 1982)

    Google Scholar 

  62. S.A. Farshad, M. Sheikholeslami, Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew. Energy 141, 246–258 (2019)

    Article  Google Scholar 

  63. M.R. Shamsi, O.A. Akbari, A. Marzban, D. Toghraie, R. Mashayekhi, Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Phys. E Low-Dimens. Syst. Nanostruct. 93, 167–178 (2017)

    Article  ADS  Google Scholar 

  64. R. Shyam, R.P. Chhabra, Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime. Int. J. Heat Mass Transf. 57(2), 742–755 (2013)

    Article  Google Scholar 

  65. A.A. Gkountas, L.T. Benos, K.-S. Nikas, I.E. Sarris, Heat transfer improvement by an Al2O3-water nanofluid coolant in printed-circuit heat exchangers of supercritical CO2 Brayton cycle. Therm. Sci. Eng. Prog. 20, 100694 (2020)

    Article  Google Scholar 

  66. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46(19), 3639–3653 (2003)

    Article  MATH  Google Scholar 

  67. M. Goodarzi et al., Slip velocity and temperature jump of a non-Newtonian nanofluid, aqueous solution of carboxy-methyl cellulose/aluminum oxide nanoparticles, through a microtube. Int. J. Numer. Methods Heat Fluid Flow (2019)

  68. M. Sheikholeslami, R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf. 89, 799–808 (2015)

    Article  Google Scholar 

  69. M. Sheikholeslami, R. Ellahi, Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl. Sci. 5(3), 294–306 (2015)

    Article  Google Scholar 

  70. H. Fatoorehchi, M. Alidadi, The extended Laplace transform method for mathematical analysis of the Thomas-Fermi equation. Chin. J. Phys. 55(6), 2548–2558 (2017)

    Article  MathSciNet  Google Scholar 

  71. H. Jafari, C.M. Khalique, M. Nazari, Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion–wave equations. Appl. Math. Lett. 24(11), 1799–1805 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. H. Fatoorehchi, H. Abolghasemi, Series solution of nonlinear differential equations by a novel extension of the Laplace transform method. Int. J. Comput. Math. 93(8), 1299–1319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  73. S. Kumar, D. Kumar, S. Abbasbandy, M.M. Rashidi, Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method. Ain Shams Eng. J. 5(2), 569–574 (2014)

    Article  Google Scholar 

  74. S.V Patankar, Numerical Heat Transfer and Fluid Flow (CRC Press, 2018)

  75. S. Colin, Single-phase gas flow in microchannels. Heat Transf. Fluid Flow Minichannels Microchannels 9–86 (2006)

  76. M. Nojoomizadeh, A. Karimipour, M. Firouzi, M. Afrand, Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe3O4/water nanofluid flow in a microchannel while its lower half filled by a porous medium. Int. J. Heat Mass Transf. 119, 891–906 (2018)

    Article  Google Scholar 

  77. G.M. Moldoveanu, A.A. Minea, M. Iacob, C. Ibanescu, M. Danu, Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid. Thermochim. Acta 659, 203–212 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derikvand, M., Solari, M.S. & Toghraie, D. Numerical investigation of the effect of a porous block and flow injection using non-Newtonian nanofluid on heat transfer and entropy generation in a microchannel with hydrophobic walls. Eur. Phys. J. Plus 136, 867 (2021). https://doi.org/10.1140/epjp/s13360-021-01846-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01846-6

Navigation