Skip to main content

Advertisement

Log in

Dynamics and performance evaluation of a self-tuning multistable shape memory energy harvester

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Multistable energy harvesting has been extensively developed to scavenge energy from mechanical oscillations. Hence, the current multistable harvester only has a fixed device which cannot adapt to changing circumstanced incentives. Therefore, it does not operate well under the wide region of external excitations frequencies in variable complex environments. To overcome the vital issue, in this paper we explored a novel energy harvester with shape memory to collect energy induced by the excitation with variational frequency, which possess the characteristic of multistable nonlinear restoring force. The nonlinear restoring force is represented by using a polynomial model with variational temperature, which can adapt to variational circumstance. The static and dynamic behaviors of the harvester are analyzed. It is shown that the shape memory energy harvester has three configurations at different temperatures, namely monostable, bistable and tristable. The three categories of harvesters are characterized by the form of their potential function. The captured performance of the presented energy harvester under three different types is contrasted; the results revealed that bistability can be applied to enhance the steady-state bandwidth considerably. Furthermore, the effect of circuit parameters on the scavenged voltage and power is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S.M. Shahruz, J. Sound Vib. 292, 987 (2006)

    Article  ADS  Google Scholar 

  2. V. Challa, M. Prasad, Y. Shi, F. Fisher, Smart Mater. Struct. 75, 015035 (2008)

    Article  ADS  Google Scholar 

  3. D.X. Cao, Y.H. Gao, W.H. Hu, Acta Mech. Sin. 35, 894 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Y.S. Zhang, R.C. Zheng, K. Nakano, M.P. Cartmell, Appl. Phys. Lett. 112, 143901 (2018)

    Article  ADS  Google Scholar 

  5. X.C. Nie, T. Tan, Z.M. Yan et al., Int. J. Mech. Sci. 159, 287 (2019)

    Article  Google Scholar 

  6. D.M. Huang, R.H. Li, S.X. Zhou, G. Litak, Eur. Phys. J. Plus 133, 510 (2018)

    Article  Google Scholar 

  7. L.B. Zhang, H.L. Dai, A. Abdelkefi, L. Wang, Energy 167, 970 (2019)

    Article  Google Scholar 

  8. W.A. Jiang, H.T. Shi, X.J. Han, L.Q. Chen, Q.S. Bi, J. Vib. Eng. Technol. 8, 893 (2020)

    Article  Google Scholar 

  9. R. Harne, K.C. Wang, Smart Mater. Struct. 24, 023001 (2013)

    Article  ADS  Google Scholar 

  10. H.T. Li, W.Y. Qin, Eur. Phys. J. Plus 134, 595 (2019)

    Article  Google Scholar 

  11. Z.Q. Xie, C.A.K. Kwuimy, T. Wang, X.X. Ding, W.B. Huang, Eur. Phys. J. Plus 134, 190 (2019)

    Article  Google Scholar 

  12. S.X. Zhou, J.Y. Cao, J. Lin, Z.Z. Wang, Eur. Phys. J. Appl. Phys. 67, 30902 (2014)

    Article  ADS  Google Scholar 

  13. J.Y. Cao, S.X. Zhou, W. Wang, J. Lin, Appl. Phys. Lett. 106, 173903 (2015)

    Article  ADS  Google Scholar 

  14. M. Panyamn, M.F. Daqaq, J. Sound Vib. 386, 336 (2017)

    Article  ADS  Google Scholar 

  15. S.X. Zhou, L. Zuo, Commun. Nonlinear Sci. Numer. Simulat. 61, 271 (2018)

    Article  ADS  Google Scholar 

  16. C. Wang, Q.C. Zhang, W. Wang, J.J. Feng, Mech. Syst. Signal. Pr. 112, 305 (2018)

    Article  Google Scholar 

  17. T. Yang, Q.J. Cao, J. Stat. Mech. Theory Exp. 2019, 033405 (2019)

  18. D.M. Huang, S.X. Zhou, G. Litak, Commun. Nonlinear Sci. Numer. Simulat. 69, 270 (2019)

    Article  ADS  Google Scholar 

  19. H.T. Li, W.Y. Qin, Nonlinear Dyn. 81, 1751 (2015)

    Article  Google Scholar 

  20. H.T. Li, W.Y. Qin, C.B. Lan, W.Z. Deng, Z.Y. Zhou, Smart Mater. Struct. 25, 015001 (2016)

    Article  Google Scholar 

  21. L.Q. Chen, W.A. Jiang, J. Appl. Mech. 82, 031004 (2015)

    Article  ADS  Google Scholar 

  22. D.X. Cao, S. Leadenham, A. Erturk, Eur. Phys. J. Spec. Top. 224, 2867 (2015)

    Article  Google Scholar 

  23. W.A. Jiang, L.Q. Chen, H. Ding, Nonlinear Dyn. 85, 2507 (2016)

    Article  Google Scholar 

  24. L.Q. Chen, W.A. Jiang, M. Panyam, M.F. Daqaq, J. Acoust. Vib. 138, 061007 (2016)

    Article  Google Scholar 

  25. L.Y. Xiong, L.H. Tang, B.R. Mace, Nonlinear Dyn. 91, 1817 (2018)

    Article  Google Scholar 

  26. W. Yang, S. Towfighian, Smart Mater. Struct. 26, 095008 (2017)

    Article  ADS  Google Scholar 

  27. H.J. Liu, X.M. Gao, Nonlinear Dyn. 96, 1067 (2019)

    Article  Google Scholar 

  28. W.A. Jiang, X.J. Han, L.Q. Chen, Q.S. Bi, Acta Mech. Sin. 36, 618 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. W.A. Jiang, X.D. Ma, X.J. Han, L.Q. Chen, Q.S. Bi, Chin. Phys. B 29, 100503 (2020)

    Article  ADS  Google Scholar 

  30. W.A. Jiang, X.J. Han, L.Q. Chen, Q.S. Bi, Nonlinear Dyn. 100, 3043 (2020)

    Article  Google Scholar 

  31. X.D. Ma, W.A. Jiang, X.F. Zhang, Q.S. Bi, Phys. Scr. 96, 015213 (2021)

    Article  ADS  Google Scholar 

  32. Y. Furuya, Intell. Mater. Syst. Struct. 7, 321 (1996)

    Article  Google Scholar 

  33. D. Stoeckel, Mater. Des. 11, 302 (1990)

    Article  Google Scholar 

  34. D.J. Hartl, D.C. Lagoudas, Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 221, 535 (2007)

    Article  Google Scholar 

  35. L.M. Schetky, Mater. Des. 12, 29 (1991)

    Article  Google Scholar 

  36. L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali et al., Mater. Des. 33, 577 (2012)

    Article  Google Scholar 

  37. H. Kahny, M.A. Huffz, A.H. Heuer, Micromech. Microeng. 8, 213 (1998)

    Article  Google Scholar 

  38. M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, R. Molfino, Ind. Robt. 34, 285 (2007)

    Article  Google Scholar 

  39. Y. Furuya, H. Shimada, Mater. Des. 12, 21 (1991)

    Article  Google Scholar 

  40. N.B. Mater, Sci. Eng. A 378, 16 (2004)

    Article  Google Scholar 

  41. J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des. 56, 1078 (2014)

    Article  Google Scholar 

  42. X.J. Han, Q.S. Bi, Nonlinear Dyn. 72, 407 (2013)

    Article  Google Scholar 

  43. Y. Yu, Z.D. Zhang, Q.S. Bi, Y.B. Gao, Appl. Math. Model. 40, 1816 (2015)

    Article  Google Scholar 

  44. A. Weremczuk, J. Rekas, R. Rusinek, J. Comput. Nonlin. Dyn. 14, 111002 (2019)

    Article  Google Scholar 

  45. R. Qu, S.L. Li, Q.S. Bi, Adv. Mech. Eng. 11, 1 (2019)

    Google Scholar 

  46. R. Rusinek, J. Rekas, K. Kecik, Int. J. Bifurcat. Chaos 29, 1930007 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos.11632008, 11702119 and 11872188 ), the Natural Science Foundation of Jiangsu Province (No.BK20170565), China Postdoctoral Science Foundation (Grant No.2020M671353) and Jiangsu Planned Projects for Postdoctoral Research Funds (No.2020Z376).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-An Jiang.

Ethics declarations

Conflict of interest statement

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, WA., Ma, XD., Liu, M. et al. Dynamics and performance evaluation of a self-tuning multistable shape memory energy harvester. Eur. Phys. J. Plus 136, 595 (2021). https://doi.org/10.1140/epjp/s13360-021-01579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01579-6

Navigation