Skip to main content
Log in

Numerical analysis of unsteady flow of three-dimensional Williamson fluid-particle suspension with MHD and nonlinear thermal radiations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the time-dependent incompressible 3D solid–liquid Williamson non-Newtonian fluid for momentum and heat flow is evaluated. Flow is generated through a sheet in both x and y directions and effected by MHD, dust particles and nonlinear thermal radiations. Problem controlling partial differential equations are converted into ordinary differential equations by using appropriate transformations. The finalized mathematical model is evaluated by ‘bvp4c method’. Numerical results are compared with already published data. Non-dimensional parameters such as first- and second-ordered radiation parameter, the interaction parameter between fluid and particles, the unsteadiness parameter, the stretching parameter, and others are discussed that how they affect the velocity and heat distribution. Physical quantities nusselt number and skin friction are also analyzed numerically as well as graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. B.C. Sakiadis, Boundary-layer behaviour on continuous solid surface. I. Boundary layer equations for two dimensional and axisymmetric flow. AIChE J. 7, 26–28 (1961)

    Article  Google Scholar 

  2. L.J. Crane, Flow past a stretching sheet. Z. Angew. Math. Phys. 21, 645–647 (1970)

    Article  Google Scholar 

  3. L.J. Grubka, K.M. Bobba, Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J. Heat Trans. 107, 248–250 (1985)

    Article  Google Scholar 

  4. C.Y. Wang, The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27, 1915–1917 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Hussain, M.Y. Malik, M. Khan, T. Salahuddin, Application of generalized Fourier heat conduction law on MHD viscoinelastic fluid flow over stretching surface, International Journal of Numerical Methods for Heat & Fluid Flow. 29, doi: https://doi.org/10.1108/HFF-02-2019-0161

  6. C.D. Surma Devi, H.S. Takhar, G. Nath, Unsteady, three-dimensional, boundary-layer flow due to a stretching surface. Int. J. Heat Mass Trans. 29, 1996–1999 (1986)

    Article  Google Scholar 

  7. B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, Unsteady three-dimensional MHD flow of a nano Eyring-Powell fluid past a convectively heated stretching sheet in the presence of thermal radiation, viscous dissipation and Joule heating. J. Assoc. Arab Unis. Basic Appl. Sci. 23, 75–84 (2016)

    Google Scholar 

  8. P.D. Ariel, Generalized three-dimensional flow due to a stretching sheet. J. Appl. Math. Mech. 12, 844–852 (2003)

    MathSciNet  MATH  Google Scholar 

  9. P.D. Ariel, On computation of the three-dimensional flow past a stretching sheet. Appl. Math. Comput. 188, 1244–1250 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  10. P.D. Ariel, The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Comput. Math. Appl. 54, 920–925 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Prashu, R. Nandkeolyar, A numerical treatment of unsteady three-dimensional hydromagnetic flow of a Casson fluid with Hall and radiation effects. Results Phys. 11, 966–974 (2018)

    Article  ADS  Google Scholar 

  12. T. Hayat, M. Bilal Ashraf, Elbaz, Three-dimensional flow of Eyring Powell nanofluid over an exponentially stretching sheet. Int. J. Numer. Methods Heat Fluid Flow 25, 593–616 (2015)

    Article  MathSciNet  Google Scholar 

  13. K.G. Kumar, S. Manjunatha, B.J. Gireesha, F.M. Abbasi, S.A. Shehzad, Numerical illustrations of 3D tangent hyperbolic liquid flow past a bidirectional moving sheet with convective heat transfer at the boundary. Heat Trans.—Asian Res. 48, 1899–1912 (2019)

    Article  Google Scholar 

  14. M.E.H. Hafidzuddin, R. Nazar, N.M. Arifin, I. Pop, Unsteady three-dimensional flow and heat transfer past a permeable stretching/shrinking surface. AIP Conference Proceedings. 1660 (2015)

  15. R.V. Williamson, The flow of pseudoplastic materials. Ind. Eng. Chem. Res. 11, 1108–1111 (1929)

    Article  Google Scholar 

  16. M.Y. Malik, M. Bibi, F. Khan, T. Salahuddin, Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption. AIP Adv. 6, 035101 (2016)

    Article  ADS  Google Scholar 

  17. M. Bibi, Khalil-Ur-Rehman1, M.Y. Malik, M. Tahir, Numerical study of unsteady Williamson fluid flow and heat transfer in the presence of MHD through a permeable stretching surface. Eur. Phys. J. Plus 133, 154 (2016)

  18. M.Y. Malik, S. Bilal, T. Salahuddin, K.U. Rehman, Three-dimensional williamson fluid flow over a linear stretching surface. Int. J. Math. Sci. Lett. 1, 53–61 (2017)

    Article  Google Scholar 

  19. T. Hayat, M.Z. Kiyani, A. Alsaedi, M. Ijaz Khan, I. Ahmad, Mixed convective three-dimensional flow of Williamson nanofluid subject to chemical reaction. Int. J. Heat Mass Trans. 127, 422–429 (2018)

    Article  Google Scholar 

  20. S. Geethan Kumar, S.V.K. Varma, R.V.M.S S. Kiran Kumar, C.S.K. Raju, S.A. Shehzad and M.N. Bashir, Three- Dimensional Hydromagnetic Convective Flow of Chemically Reactive Williamson Fluid with Non-Uniform Heat Absorption and Generation, The International Journal of Chemical Reactor Engineering 17, https://doi.org/10.1515/ijcre-2018-0118 (2018)

  21. M. Khan, T. Salahuddin, M.Y. Malik, F. Khan, A. Hussain, Variable diffusion and conductivity change in 3D rotating Williamson fluid flow along with magnetic field and activation energy, Intr. International Journal of Numerical Methods for Heat and Fluid Flow (2019). https://doi.org/10.1108/HFF-02-2019-0145

  22. P.G. Saffmann, On the stability of laminar flow of a dusty gas. J. Fluid Mech. 13, 120–128 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  23. R.E. Singleton, Fluid mechanics of gas-solid particle flow in boundary layers (Ph.D. thesis), California Inst. Tech. (1964)

  24. N. Datta, S.K. Mishra, Boundary layer flow of a dusty fluid over a semiinfinite flat plate. Acta Mech. 42, 71–82 (1982)

    Article  Google Scholar 

  25. K. Vajravelu, J. Nayfeh, Hydomagnetic flow of a dusty fluid over a stretching sheet. Int. J. Non-Linear Mech. 27, 937–945 (1992)

    Article  Google Scholar 

  26. N. Sandeep, C. Sulochana, B.R. Kumar, Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface. Eng. Sci. Technol. Int. J. 19, 227–240 (2016)

    Google Scholar 

  27. M. Bibi, M.Y. Malik, A. Zeeshan, Numerical analysis of unsteady magneto-biphase Williamson fluid flow with time dependent magnetic field. Commun. Theor. Phys. 71, 143 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Bibi, A. Zeeshan, M.Y. Malik, K.U. Rehman, Numerical investigation of the unsteady solid-particle flow of a tangent hyperbolic fluid with variable thermal conductivity and convective boundary. Eur. Phys. J. Plus 134, 298 (2019)

    Article  Google Scholar 

  29. B.C. Prasannakumara, N.S. Shashikumar, M. Archana, Three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions. J. Comput. Appl. Res. Mech. Eng. (JCARME) 8, 25–38 (2018)

    Google Scholar 

  30. B.J. Gireesha, B. Mahanthesh, K.L. Krupalakshmi, Hall effect on two-phase radiated flow of magneto-dusty-nanoliquid with irregular heat generation/consumption. Results Phys. 7, 4340–4348 (2017)

    Article  ADS  Google Scholar 

  31. G. Kalpana, K.R. Madhura, R.B. Kudenatti, Impact of temperature-dependant viscosity and thermal conductivity on MHD boundary layer flow of two-phase dusty fluid through permeable medium. Eng. Sci. Technol. Int. J. 22, 416–427 (2019)

    Google Scholar 

  32. T. Hayat, M. Awais, S. Asghar, Radiative effects in a three-dimensional flow of MHD Eyring-Powell fluid. J. Egypt. Math. Soc. 21, 379–384 (2013)

    Article  MathSciNet  Google Scholar 

  33. R. Gayathri, A. Govindarajan and R. Sasikala, Three-dimensional couette flow of dusty fluid with heat transfer in the presence of magnetic field, (NCMTA 18), https://doi.org/10.1088/1742-6596/1000/1/012147 (2018)

  34. M.M. Bhatti, A. Zeeshan, R. Ellahi, Study of heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dusty fluid. J. Theor. Appl. Mech. 46, 75–94 (2016)

    Article  MathSciNet  Google Scholar 

  35. R. Sivaraj, B. Rushi Kumar, Chemically reacting dusty viscoelastic fluid flowin an irregular channel with convective boundary. Ain Shams Eng. J. 4, 93–101 (2013)

    Article  Google Scholar 

  36. G. Kumaran, R. Sivaraj, A.S. Reddy, B.R. Kumar, V.R. Prasad, Hydromagnetic forced convective flow of Carreau nanofluid over a wedge/plate/stagnation of the plate. Eur. Phys. J. Special Topics 228, 2647–2659 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia for funding this work through research groups program under grant number R.G.P-1/218/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madiha Bibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, M., Zeeshan, A. & Malik, M.Y. Numerical analysis of unsteady flow of three-dimensional Williamson fluid-particle suspension with MHD and nonlinear thermal radiations. Eur. Phys. J. Plus 135, 850 (2020). https://doi.org/10.1140/epjp/s13360-020-00857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00857-z

Navigation