Skip to main content
Log in

Investigations of electrical properties of Pr0.65Ca0.25Cd0.1MnO3 ceramic

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Pr0.65Ca0.25Cd0.1MnO3 ceramic was elaborated using the conventional solid-state reaction technique. The polycrystalline sample was subjected to investigate by ac impedance spectroscopy. From the main results, the electrical conductivity analysis confirms the semiconductor behavior and indicates that the hopping process governs the electrical conductivity. From ac-conductivity, two distinct mechanisms are observed. Indeed, the conduction mechanism is attributed to the correlated barrier hopping model in the middle of the frequency region and the overlapping large polaron tunneling in the high-frequency one. The analyzed impedance and modulus confirmed the presence of non-Debye-type relaxation phenomenon. Different electrical equivalent circuits were used to analyze the Nyquist plots. The obtained results confirm the contribution of grain boundary on the conduction. The increase in dielectric constant and the rate of its increase at low frequency were related to the disorder of the cation sublattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Huang, L. Pei, Z. Liu, Z. Lu, Y. Sui, Z. Qian, W. Su, A study on PrMnO-based perovskite oxides used in SOFC cathodes. J. Alloys Compd. 365, 265 (2002)

    Article  Google Scholar 

  2. T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J. Electrochem. Soc. 142, 1519 (1995)

    Article  ADS  Google Scholar 

  3. H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Ln0.4Sr0.6Co0.8Fe0.2O3− δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ion. 117, 227 (1999)

    Article  Google Scholar 

  4. GCh. Kostogloudis, Ch. Ftikos, A. Ahmad-Khanlou, A. Naoumidis, D. Stover, Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte. Solid State Ion. 134, 127 (2000)

    Article  Google Scholar 

  5. H. Ullmann, N. Trofimenko, F. Tietz, D. Stover, A. Ahmad-Khanlou, Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion. 138, 79 (2000)

    Article  Google Scholar 

  6. J. Hormes, M. Pantelouris, G.B. Balazs, B. Rambabu, X-ray absorption near edge structure (XANES) measurements of ceria-based solid electrolytes. Solid State Ion. 945, 136 (2000)

    Google Scholar 

  7. A. Selmi, M. Khelifi, H. Rahmouni, R. M’nassri, K. Khirouni, N. Chniba Boudjada, A. Cheikhrouhou, Electrical conductivity analysis and magnetic properties of Pr0.7Ca0.3 Mn0.95 Co0.05 O3 oxide. J. Mater. Sci. Mater. Electron. 28, 1901 (2017)

    Article  Google Scholar 

  8. V.S. Kolat, H. Gencer, M. Gunes, S. Atalay, Effect of B-doping on the structural magnetotransport and magnetocaloric properties of La0.67Ca0.33MnO3 compounds. Mater. Sci. Eng. B 140, 212 (2007)

    Article  Google Scholar 

  9. Z.C. Xia, S.L. Yuan, W. Feng, L.J. Zhang, G.H. Zang, J. Tang, L. Liu, D.W. Liu, Q.H. Zheng, L. Chen, Z.H. Fang, S. Liu, C.Q. Tang, Magnetoresistance and transport properties of different impurity doped La0.67Ca0.33MnO3 composite. Solid State Commun. 127, 572 (2003)

    ADS  Google Scholar 

  10. N. Khare, D.P. Singh, H.K. Gupta, P.K. Siwach, O.N. Srivastava, Preparation and study of silver added La0.67Ca0.33MnO3 film. J. Phys. Chem. Solids 65, 870 (2004)

    Article  ADS  Google Scholar 

  11. T. Zhang, Y.Z. Fang, M. Dressel, X.P. Wang, Q.F. Fang, Nanometer size effect on the structure and magnetic properties of high oxygen content ferromagnetic PrMnO3+δ nanoparticles. J. Appl. Phys. 108, 113901 (2010)

    Article  ADS  Google Scholar 

  12. N. Jiang, Y. Jiang, Q. Lu, S. Zhao, Dynamic exchange effect induced multi-state magnetic phase diagram in manganese oxide Pr1−xCaxMnO3. J. Alloys Compd. 805, 50 (2019)

    Article  Google Scholar 

  13. H. Rim, S. Jeung, E. Jung, J.S. Lee, Characteristics of Pr1−xMxMnO3, (M = Ca, Sr) as cathode material in solid oxide fuel cells. Mater. Chem. Phys. 52, 54 (1998)

    Article  Google Scholar 

  14. A. Biswas, I. Das, C. Majumdar, Modification of the charge ordering in Pr1/2Sr1/2 MnO3 nanoparticles. J. Appl. Phys. 98, 124310 (2005)

    Article  ADS  Google Scholar 

  15. Z. Ur Rehman, M.S. Anwar, B. Koo, Influence of barium doping on the magnetic and magnetocaloric properties of Pr1−x Ba x MnO3. J. Super. Nov. Mag. 28, 1629 (2015)

    Article  Google Scholar 

  16. P. Doggali, Y. Teraoka, S. Rayalu, N. Labhsetwa, Effect of A-site substitution in perovskites: catalytic properties of PrMnO3 and Ba/K/Ce substituted PrMnO3 for CO and PM oxidation. J. Environ. Chem. Eng. 3, 420 (2015)

    Article  Google Scholar 

  17. M. Khelifi, R. M’nassri, A. Selmi, H. Rahmounib, K. Khirounia, N. Chniba Boudjadad, A. Cheikhrouhou, Investigation of magnetic and transport properties of PrCa(MnCo)O prepared by solid state process. J. Magn. Magn. Mater. 423, 20 (2017)

    Article  ADS  Google Scholar 

  18. Z. Han, The low temperature specific heat and electrical transport, magnetic properties of Pr0.65Ca0.35MnO3. J. Magn. Magn. Mater. 423, 171 (2016)

    Article  ADS  Google Scholar 

  19. R. Kondo, H. Okimura, Y. Sakai, Electrical properties of semiconductor photodiodes with semitransparent films. Jpn. J. Appl. Phys. 10, 154 (1971)

    Article  Google Scholar 

  20. F.A. Benko, F.P. Koffyberg, Quantum efficiency and optical transitions of CdO photo anodes. Solid State Commun. 57, 90 (1986)

    Article  Google Scholar 

  21. C. Sravani, K.T.R. Reddy, O.M. Hussain, P.J. Reddy, Investigations on n-CdO/p-CdTe thin film heterojunctions. Thin Solid Films 253, 339 (1994)

    Article  ADS  Google Scholar 

  22. L.M. Su, N. Grote, F. Schmitt, Diffused planar InP bipolar transistor with a cadmium oxide film emitter. Electron. Lett. 20, 716 (1984)

    Article  ADS  Google Scholar 

  23. A.S. Aldwayyan, F.M. Al-Jekhedab, M. Al-Noaimi, B. Hammouti, T.B. Hadda, M. Suleiman, I. Warad, Synthesis and characterization of CdO nanoparticles starting from organometalic Dmphen-CdI2 complex. Int. J. Electrochem. Sci. 8, 10506 (2013)

    Google Scholar 

  24. V. Gupta, B. Raina, K.K. Bamza, Preparation, structural, spectroscopic and magneto-electric properties of multiferroic cadmium doped neodymium manganite. J. Mater. Sci. Mater. Electron. 29, 8947 (2018)

    Article  Google Scholar 

  25. V. Gupta, B. Raina, S. Verma, K.K. Bamzai, Study of structural, spectroscopic and dielectric properties of multiferroic cadmium doped Samarium manganite synthesized by solid state reaction method. AIP Conf. Proc. 1953, 050010 (2018)

    Article  Google Scholar 

  26. J.P. Arauhjo, V.S. Amaral, P.B. Tavares, F. Lencart-Silva, A.A.C.S. Lourenço, E. Alves, J.B. Sousa, J.M. Vieira, Cadmium addition to vacancy doped lanthanum manganites: from metallic to insulator behaviour. J. Magn. Magn. Mater. 226, 797 (2001)

    Article  ADS  Google Scholar 

  27. I.O. Troyanchuk, D.D. Khalyavin, S.N. Pastushonok, Effect of Cd ions on transport properties of orthomanganites. J. Phys. Condens. Matter 10, 185 (1998)

    Article  ADS  Google Scholar 

  28. N.H. Luong, D.T. Hanh, N. Chau, N.D. Tho, T.D. Hiep, Properties of perovskites La1−xCdxMnO3. J. Magn. Magn. Mater. 290, 690 (2005)

    Article  ADS  Google Scholar 

  29. C. Saravanan, R. Thiyagarajan, K. Manikandan, M. Sathiskumar, P.V. Kanjariya, J.A. Bhalodia, S. Arumugam, Effect of Cd doping on magnetocaloric effect and critical behavior analysis on perovskite Nd1−xCdxMnO3 (x = 0, 0.1, 0.2, 0.3, and 0.4) manganite polycrystals. J. Appl. Phys. 122, 245109 (2017)

    Article  ADS  Google Scholar 

  30. P.V. Kanjariya, G.D. Jadav, C. Saravanan, L. Govindaraj, S. Arumugam, J.A. Bhalodia, Detailed investigations on structural properties and transport mechanism governed in Nd1−xCdxMnO3. J. Mater. Sci. Mater. Electron. 29, 8107 (2018)

    Article  Google Scholar 

  31. C. Saravanan, R. Thiyagarajanb, P.V. Kanjariya, P. Sivaprakash, J.A. Bhalodia, S. Arumugam, Electrical resistivity, magnetic and magneto-caloric studies on perovskite manganites Nd1−xCdxMnO3 (x = 0 and 0.1) polycrystals. J. Magn. Magn. Mater. 476, 35 (2019)

    Article  ADS  Google Scholar 

  32. A. Pena, J. Gutiérrez, J.M. Barandiara, J.P. Chapman, M. Insausti, T. Rojo, Correlation between structure and magnetic properties of Cd-substituted La0.7(Ca0.3xCdx)MnO3 CMR manganite. J. Solid State Chem. 174, 52 (2003)

    Article  ADS  Google Scholar 

  33. H. Rahmouni, M. Smari, B. Cherif, E. Dhahrib, K. Khiroun, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5−xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 4, 10457 (2015)

    Article  Google Scholar 

  34. A. Bettaibi, R. M’nassri, A. Selmi, H. Rahmouni, N. Chniba-Boudjada, A. Chiekhrouhou, K. Khirouni, Effect of chromium concentration on the structural, magnetic and electrical properties of praseodymium-calcium manganite. J. Alloys Compd. 650, 286 (2015)

    Article  Google Scholar 

  35. N. Elghoul, M. Wali, S. Kraiem, H. Rahmouni, E. Dhahri, K. Khirouni, Sodium deficiency effect on the transport properties of La0.8Na0.2−xxMnO3 manganites. Phys. B Condes. Mater. 478, 108 (2015)

    Article  ADS  Google Scholar 

  36. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 1979)

    Google Scholar 

  37. H.E. Sekrafi, A. Ben-JaziaKharrat, M.A. Wederni, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric properties and conduction mechanism of sol–gel prepared Pr0.75Bi0.05Sr0.1Ba0.1Mn0.98Ti0.02O3 compound. Mater. Res. Bull. 111, 329 (2019)

    Article  Google Scholar 

  38. A. Khlifi, A. Mleiki, H. Rahmouni, N. Guermazi, K. Khirouni, A. Cheikhrouhou, Barium deficiency and sintering temperature effects on structural and transport properties of La0.5Eu0.2Ba0.3−xxMnO3 manganite. J. Mater. Sci. Mater. Electron. 30, 19513 (2019)

    Article  Google Scholar 

  39. G.F. Pike, AC conductivity of scandium oxide and a new hopping model for conductivity. Phys. Rev. B Solid State 1572, 6 (1972)

    Google Scholar 

  40. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, Europium substitution for lanthanium in LaBaMnO. The structural and electrical properties of La0.7−xEuxBa0.3MnO3 perovskite. J. Alloys Compd. 690, 890 (2017)

    Article  Google Scholar 

  41. A.K. Jonscher, New interpretation of dielectric loss peaks. Nature 253, 717 (1975)

    Article  ADS  Google Scholar 

  42. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  43. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  44. S.R. Elliot, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 13 (1987)

    Google Scholar 

  45. A.B. Hassen, F.I.H. Rhouma, M. Daoudi, J. Dhahri, M. Zaidi, N. Abdelmoulae, Influence of defect on the electrical and optical properties of A-site non-stoichiometry Ca0.67 La 0.220.11Ti(1−x)CrxO3-δ perovskite. RSC Adv. 9, 19285 (2019)

    Article  Google Scholar 

  46. A. Satapathy, E. Sinha, B.K. Sonu, S.K. Rout, Conduction and relaxation phenomena in barium zirconate ceramic in wet N2 environment. J. Alloys Compd. 811, 152042 (2019)

    Article  Google Scholar 

  47. A. Ben JaziaKharrat, S. Moussa, N. Moutiaa, K. Khirouni, W. Boujelben, Structural, electrical and dielectric properties of Bi-doped Pr0.8-xBixSr0.2MnO3 manganite oxides prepared by sol–gel process. J. Alloys Compd. 724, 389 (2017)

    Article  Google Scholar 

  48. A.E. Neifeld, E.V. Arkhipov, A.N. Ugryumova, V.A. Korolyov, Y. Mukovsky, Temperature dependence of activation energy of the conductivity of manganites in paramagnetic phase. arXiv preprint arXiv:cond-mat/0510362 (2005)

  49. Y.B. Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl. Phys. A 120, 1537 (2015)

    Article  ADS  Google Scholar 

  50. S. Amhil, L. Essaleh, S.M. Wasim, S.B. Moumen, G. Marin, A. Alimoussa, Overlapping large polaron tunneling conduction process in the ordered defect compound p-CuIn3Se5. Mater. Res. Exp. 5, 085903 (2018)

    Article  Google Scholar 

  51. B. Panda, K. Lokapriya Routray, D. Behera, Studies on conduction mechanism and dielectric properties of the nano-sized La0.7Ca0.3MnO3 (LCMO) grains in the paramagnetic state. Phys. B Condens. Matter 583, 411967 (2020)

    Article  Google Scholar 

  52. J.L. García-Muñoz, C. Frontera, B. Rivas-Murias, J. Mira, Dielectric properties of Bi1−xSrxMnO3 (x = 0.40, 0.50) manganites: influence of room temperature charge order. J. Appl. Phys. 105, 084116 (2009)

    Article  ADS  Google Scholar 

  53. V. Khopkar, S. Balaram, Low temperature dielectric properties and NTCR behavior of BaFe0.5Nb0.5O3 double perovskite ceramic. Phys. Chem. Chem. Phys. 22, 2986 (2020)

    Article  Google Scholar 

  54. I. Coondoo, N. Panwar, M. AsifRafiq, V.S. Puli, M. Nadeem Rafiq, R.S. Katiyar, Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3 [R = La, Nd] ceramics. Ceram. Int. 40, 9895 (2014)

    Article  Google Scholar 

  55. M. Sassi, A. Bettaibi, A. Oueslati, K. Khirouni, M. Gargouri, Electrical conduction mechanism and transport properties of LiCrP2O7 compound. J. Alloys Compd. 649, 642 (2015)

    Article  Google Scholar 

  56. S. Mathlouthi, A. Oueslati, B. Louati, AC conductivity and conduction mechanism study of rubidium gadolinium diphosphate compound. Ind. J. Phys. 93, 603 (2019)

    Article  Google Scholar 

  57. R. Martinez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, Impedance spectroscopy analysis of Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 heterostructure. J. Phys. D Appl. Phys. 44, 105302 (2011)

    Article  ADS  Google Scholar 

  58. R.N. Bhowmik, A.G. Lone, Dielectric properties of α-Fe1.6 Ga0.4O3 oxide: a promising magneto-electric material. J. Alloys. Compd. 680, 31 (2016)

    Article  Google Scholar 

  59. N. Assoudi, W. Hzez, R. Dhahri, I. Walha, H. Rahmouni, K. Khirouni, E. Dhahri, Physical properties of Ag/Ca doped Lantanium manganite. J. Mater. Sci. Mater. Electron. 29, 20113 (2018)

    Article  Google Scholar 

  60. M. Nadeem, M.J. Akhtar, Melting/collapse of charge orbital ordering and spread of relaxation time with frequency in La0.5Ca0.5MnO3+y by impedance spectroscopy. J. Appl. Phys. 104, 103713 (2008)

    Article  ADS  Google Scholar 

  61. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1–x/4O3 ceramics. J. Alloys Compd. 509, 6394 (2011)

    Article  Google Scholar 

  62. R. Charguia, S. Hcini, M. Boudard, A. Dhahri, Microstructural properties, conduction mechanism, dielectric behavior, impedance and electrical modulus of La0.6Sr0.2Na0.2MnO3 manganite. J. Mater. Sci. Mater. Electron. 30(3), 2975 (2019)

    Article  Google Scholar 

  63. M. Idrees, M. Nadeem, M.M. Hassan, Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopy. J. Phys. D. 43, 155401 (2010)

    Article  ADS  Google Scholar 

  64. I. Ahmad, M.J. Akhtar, R.T.A. Khan, M.M. Hasan, Change of Mott variable range to small polaronic hole hopping conduction mechanism and formation of Schottky barriers in Nd0.9Sr0.1FeO3. J. Appl. Phys. 114, 034103 (2013)

    Article  ADS  Google Scholar 

  65. W. Bai, G. Chen, J.Y. Zhu, J. Yangand, T. Lin, Dielectric responses and scaling behaviors in Aurivillius Bi6Ti3Fe2O18 multiferroic thin films. Appl. Phys. Lett. 100, 082902 (2012)

    Article  ADS  Google Scholar 

  66. Q. Ke, X. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin film. Phys. Rev. B Condens. Matter Mater. Phys 82, 024102 (2010)

    Article  ADS  Google Scholar 

  67. A.E. Stearn, H. Hyring, The deduction of reaction mechanisms from the theory of absolute rates. J. Chem. Phys 5, 113 (1937)

    Article  ADS  Google Scholar 

  68. S. Thakura, R. Raia, I. Bdikinb, M. Almeida Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8 A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 19, 1 (2016)

    Article  Google Scholar 

  69. N.V. Prasad, G.V. Prasad, T. Bhimasankaram, G.S. Kumar Suryanarayana, Synthesis, impedance and dielectric properties of LaBi5Fe2Ti3O18. Bull. Mater. Sci. 24, 487 (2001)

    Article  Google Scholar 

  70. G. Ranga Mohan, D. Ravinder, A.V. Ramana Reddy, B.S. Boyanov, Dielectric properties of polycrystalline mixed nickel–zinc ferrites. Mater. Lett 40, 39 (1999)

    Article  Google Scholar 

  71. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  72. R. Lahouli, J. Massoudi, M. Smari, H. Rahmouni, K. Khirouni, E. Dhahri, L. Bessais, Investigation of annealing effects on the physical properties of Ni0.6Zn0.4Fe1.5Al0.5O4 ferrite. RSC Adv. 9, 19949 (2019)

    Article  Google Scholar 

  73. T. Kar, R.N.P. Choudhary, Structural dielectric and electrical properties of LiNbMoO6 ceramics. Mater. Lett. 32, 109 (1997)

    Article  Google Scholar 

  74. T. Kar, R.N.P. Choudhary, Structural, dielectric and electrical conducting properties of CsBBO6 (B = Nb, Ta; B = W, Mo) ceramics. Mater. Sci. Eng. 90, 224 (2002)

    Article  Google Scholar 

  75. T. Kar, Structural and dielectric properties of defect pyrochloretype ABWO6 ceramic. Pramana Res. J. 9, 2249 (2019)

    Google Scholar 

  76. H.M. Rai, S.K. Saxena, R. Late, V. Mishra, P. Rajput, A. Sagdeo, R. Kumara, P.R. Sagdeo, Observation of large dielectric permittivity and dielectric relaxation phenomenon in Mn-doped lanthanum gallate. RSC Adv. 6, 2662 (2016)

    Article  Google Scholar 

  77. R.S. Freitas, J.F. Mitchell, P. Schiffer, Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3. Phys. Rev. B Condens. Matter Mater. 72, 144429 (2005)

    Article  ADS  Google Scholar 

  78. J.L. Cohn, M. Peterca, J.J. Neumeier, Low-temperature permittivity of insulating perovskite manganites. Phys. Rev B 70, 214433 (2004)

    Article  ADS  Google Scholar 

  79. J.L. Cohn, M. Peterca, J.J. Neumeier, Giant dielectric permittivity of electron-doped manganite thin films, Ca1− xLaxMnO3 (0≤ x ≤ 003). J. Appl. Phys. 97, 034102 (2005)

    Article  ADS  Google Scholar 

  80. V.G. Nair, A. Das, V. Subramanian, P.N. Santhosh, Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J. Appl. Phys. 113, 213907 (2013)

    Article  ADS  Google Scholar 

  81. V.G. Nair, L. Pal, V. Subramanian, P.N. Santhosh, Structural, magnetic, and magnetodielectric studies of metamagnetic DyFe0.5Cr0.5O3. J. Appl. Phys. 115, 17D728 (2014)

    Article  Google Scholar 

  82. O. Bidault, M. Maglione, M. Actis, M. Kchikech, B. Salce, Polaronic relaxation in perovskites. Phys. Rev. B Condens. Matter Mater. Phys. 52, 4191 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mleiki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlifi, A., Hanen, R., Mleiki, A. et al. Investigations of electrical properties of Pr0.65Ca0.25Cd0.1MnO3 ceramic. Eur. Phys. J. Plus 135, 790 (2020). https://doi.org/10.1140/epjp/s13360-020-00799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00799-6

Navigation