Skip to main content
Log in

Bäcklund transformations and Riemann–Bäcklund method to a (3 + 1)-dimensional generalized breaking soliton equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the bilinear method is employed to investigate the N-soliton solutions of a (3 + 1)-dimensional generalized breaking soliton equation. Three sets of bilinear Bäcklund transformations are obtained by means of gauge transformation. The Riemann–Bäcklund method is further extended to the (3 + 1)-dimensional nonlinear integrable systems. The quasiperiodic wave solutions of the (3 + 1)-dimensional generalized breaking soliton equation are systematically analyzed. The asymptotic properties of the quasiperiodic solutions are discussed by using a limiting procedure. The one-periodic and two-periodic waves tend to the 1-soliton and 2-soliton under a small amplitude limit, respectively. The dynamical characteristics of the one- and two-periodic waves are summarized by selecting different parameters. Furthermore, we obtain some new types of the quasiperiodic wave solutions of the variable coefficient (3 + 1)-dimensional generalized breaking soliton equation. These solutions present the dynamical behaviors of C-type, anti-C-type and Z-type periodic waves moving on the background of the periodic waves of bell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.N. Pelinovsky, E.G. Shurgalina, A.V. Sergeeva, T.G. Talipova, G.A. El, R.H.J. Grimshaw, Two-soliton interaction as an elementary act of soliton turbulence in integrable systems. Phys. Lett. A 377, 272–275 (2013)

    ADS  MATH  Google Scholar 

  2. G. Manno, M.V. Pavlov, Hydrodynamic-type systems describing 2-dimensional polynomially integrable geodesic flows. J. Geom. Phys. 113, 197–205 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  3. M. Wang, B. Tian, M. Li, W.R. Sun, Integrability and soliton solutions for an N-coupled nonlinear Schrödinger system in optical fibers. Physica A 392, 4532–4542 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  4. K. Lu, Y.L. Jin, Y.S. Chen, Y.F. Yang, L. Hou, Z.Y. Zhang, Z.G. Li, C. Fu, Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems. Mech. Syst. Signal Process. 123, 264–297 (2019)

    ADS  Google Scholar 

  5. C. Fu, G.J. Feng, J.J. Ma, K. Lu, Y.F. Yang, F.S. Gu, Predicting the dynamic response of Dual-Rotor system subject to interval parametric uncertainties based on the non-intrusive metamodel. Mathematics 8, 736 (2020)

    Google Scholar 

  6. Y.L. Ye, C. Hou, D.D. Cheng, S.H. Chen, Rogue wave solutions of the vector Lakshmanan–Porsezian–Daniel equation. Phys. Lett. A 384, 126226 (2020)

    MathSciNet  Google Scholar 

  7. R. Grimshaw, E. Pelinovsky, T. Taipova, A. Sergeeva, Rogue internal waves in the ocean: long wave model. Eur. Phys. J. Spec. Top. 185, 195–208 (2010)

    Google Scholar 

  8. P.J. Olver, Application of Lie Groups to Differential Equations (Springer, New York, 1993)

    MATH  Google Scholar 

  9. G.W. Bluman, S.C. Anco, Symmetry and Integration Methods for Differential Equations (Springer, New York, 2002)

    MATH  Google Scholar 

  10. Z.L. Zhao, B. Han, Lie symmetry analysis of the Heisenberg equation. Commun. Nonlinear Sci. Numer. Simul. 45, 220–234 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Z.L. Zhao, B. Han, Lie symmetry analysis, Bäcklund transformations, and exact solutions of a (2+1)-dimensional Boiti–Leon–Pempinelli system. J. Math. Phys. 58, 101514 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  12. G.W. Bluman, A.F. Cheviakov, N.M. Ivanova, Framework for nonlocally related partial differential equation systems and nonlocal symmetries: extension, simplification, and examples. J. Math. Phys. 47, 113505 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  13. G.W. Bluman, Z.Z. Yang, A symmetry-based method for constructing nonlocally related partial differential equation systems. J. Math. Phys. 54, 093504 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  14. S.Y. Lou, X.B. Hu, Non-local symmetries via Darboux transformations. J. Phys. A Math. Gen. 30, L95 (1997)

    MathSciNet  MATH  Google Scholar 

  15. X.R. Hu, S.Y. Lou, Y. Chen, Explicit solutions from eigenfunction symmetry of the Korteweg–de Vries equation. Phys. Rev. E 85, 056607 (2012)

    ADS  Google Scholar 

  16. Z.L. Zhao, B. Han, Residual symmetry, Bäcklund transformation and CRE solvability of a (2+1)-dimensional nonlinear system. Nonlinear Dyn. 94, 461–474 (2018)

    MATH  Google Scholar 

  17. Z.L. Zhao, Bäcklund transformations, rational solutions and soliton-cnoidal wave solutions of the modified Kadomtsev–Petviashvili equation. Appl. Math. Lett. 89, 103–110 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Z.L. Zhao, Conservation laws and nonlocally related systems of the Hunter–Saxton equation for liquid crystal. Anal. Math. Phys. 9, 2311–2327 (2019)

    MathSciNet  MATH  Google Scholar 

  19. B. Ren, X.P. Cheng, J. Lin, The (2+1)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions. Nonlinear Dyn. 86, 1855–1862 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Y.H. Wang, H. Wang, Nonlocal symmetry, CRE solvability and soliton-cnoidal solutions of the (2+1)-dimensional modified KdV–Calogero–Bogoyavlenkskii–Schiff equation. Nonlinear Dyn. 89, 235–241 (2017)

    MATH  Google Scholar 

  21. R. Hirota, Direct methods in soliton theory, in Soliton, ed. by R.K. Bullough, P.J. Caudrey (Spring, Berlin, 1980)

    MATH  Google Scholar 

  22. A.M. Wazwaz, S.A. El-Tantawy, Solving the (3+1)-dimensional KP–Boussinesq and BKP–Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    MathSciNet  Google Scholar 

  23. J.G. Liu, M.X. You, L. Zhou, G.P. Ai, The solitary wave, rogue wave and periodic solutions for the (3+1)-dimensional soliton equation. Z. Angew. Math. Phys. 70, 4 (2019)

    MathSciNet  MATH  Google Scholar 

  24. W.X. Ma, Z.Y. Qin, X. Lü, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923–931 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Z.L. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Mod. Phys. Lett. B 31, 1750157 (2017)

    ADS  MathSciNet  Google Scholar 

  26. Z.L. Zhao, L.C. He, Multiple lump solutions of the (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Appl. Math. Lett. 95, 114–121 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Z.L. Zhao, L.C. He, Y.B. Gao, Rogue wave and multiple lump solutions of the (2+1)-dimensional Benjamin–Ono equation in fluid mechanics. Complexity 2019, 8249635 (2019)

    MATH  Google Scholar 

  28. Z.L. Zhao, L.C. He, M-lump, high-order breather solutions and interaction dynamics of a generalized (2+1)-dimensional nonlinear wave equation. Nonlinear Dyn. 100, 2753–2765 (2020)

    Google Scholar 

  29. Z.L. Zhao, L.C. He, M-lump and hybrid solutions of a generalized (2+1)-dimensional Hirota–Satsuma–Ito equation. Appl. Math. Lett. 111, 106612 (2021)

    MathSciNet  MATH  Google Scholar 

  30. G.Q. Xu, A.M. Wazwaz, Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 98, 1379–1390 (2019)

    Google Scholar 

  31. S.T. Huang, C.F. Wu, C. Qi, Rational and semi-rational solutions of the modified Kadomtsev-Petviashvili equation and the (2+1)-dimensional Konopelchenko–Dubrovsky equation. Nonlinear Dyn. 97, 2829–2841 (2019)

    MATH  Google Scholar 

  32. G. Scoufis, An application of the inverse scattering transform to the modified intermediate long wave equation. J. Math. Phys. 46, 103501 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  33. W.X. Ma, The inverse scattering transform and soliton solutions of a combined modified Korteweg–de Vries equation. J. Math. Anal. Appl. 471, 796–811 (2019)

    MathSciNet  MATH  Google Scholar 

  34. G.Q. Zhang, Z.Y. Yan, Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Physica D 402, 132170 (2020)

    MathSciNet  Google Scholar 

  35. X.G. Geng, Y.Y. Zhai, H.H. Dai, Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    MathSciNet  MATH  Google Scholar 

  36. X.G. Geng, L.H. Wu, G.L. He, Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Physica D 240, 1262–1288 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  37. A.S. Fokas, M.J. Ablowitz, The inverse scattering transform for the Benjamin–Ono equation—a pivot to multidimensional problems. Stud. Appl. Math. 68, 1–10 (1983)

    MathSciNet  MATH  Google Scholar 

  38. J. Xu, E.G. Fan, Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons. J. Differ. Equ. 259, 1098–1148 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  39. S.F. Tian, Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method. J. Phys. A Math. Theor. 50, 395204 (2017)

    MathSciNet  MATH  Google Scholar 

  40. X.B. Wang, B. Han, Application of the Riemann–Hilbert method to the vector modified Korteweg–de Vries equation. Nonlinear Dyn. 99, 1363–1377 (2019)

    Google Scholar 

  41. J.P. Wu, X.G. Geng, Inverse scattering transform of the coupled Sasa–Satsuma equation by Riemann–Hilbert approach. Commun. Theor. Phys. 67, 527–534 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  42. A. Nakamura, A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution. J. Phys. Soc. Jpn. 47, 1701–1705 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  43. A. Nakamura, A direct method of calculating periodic wave solutions to nonlinear evolution equations. II. Exact one- and two-periodic wave solution of the coupled bilinear equations. J. Phys. Soc. Jpn. 48, 1365–1370 (1980)

    ADS  MathSciNet  MATH  Google Scholar 

  44. E.G. Fan, Y.C. Hon, Quasiperiodic waves and asymptotic behaviour for Bogoyavlenskii’s breaking soliton equation in (2+1) dimensions. Phys. Rev. E 78, 036607 (2008)

    ADS  MathSciNet  Google Scholar 

  45. E.G. Fan, Y.C. Hon, On a direct procedure for the quasi-periodic wave solutions of the supersymmetric Ito’s equation. Rep. Math. Phys. 66, 355–365 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  46. E.G. Fan, Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik–Novikov–Veselov equation. J. Phys. A Math. Theor. 42, 095206 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  47. L. Luo, E.G. Fan, Bilinear approach to the quasi-periodic wave solutions of Modified Nizhnik–Novikov–Vesselov equation in (2+1) dimensions. Phys. Lett. A 374, 3001–3006 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  48. E.G. Fan, Supersymmetric KdV–Sawada–Kotera–Ramani equation and its quasi-periodic wave solutions. Phys. Lett. A 374, 744–749 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  49. L. Luo, E.G. Fan, Quasi-periodic waves of the N = 1 supersymmetric modified Korteweg–de Vries equation. Phys. Lett. A 74, 666–675 (2011)

    MathSciNet  MATH  Google Scholar 

  50. E.G. Fan, Y.C. Hon, Quasiperiodic wave solutions of N = 2 supersymmetric KdV equation in superspace. Stud. Appl. Math. 125, 343–371 (2010)

    MathSciNet  MATH  Google Scholar 

  51. S.F. Tian, H.Q. Zhang, Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl. 371, 585–608 (2010)

    MathSciNet  MATH  Google Scholar 

  52. S.F. Tian, H.Q. Zhang, On the integrability of a generalized variable-coefficient forced Korteweg–de Vries equation in fluids. Stud. Appl. Math. 132, 212–246 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Z.J. Qiao, E.G. Fan, Negative-order Korteweg–de Vries equtions. Phys. Rev. E 86, 016601 (2012)

    ADS  Google Scholar 

  54. Z.L. Zhao, B. Han, Quasiperiodic wave solutions of a (2+1)-dimensional generalized breaking soliton equation via bilinear Bäcklund transformation. Eur. Phys. J. Plus 131, 128 (2016)

    Google Scholar 

  55. Z.L. Zhao, B. Han, On periodic wave solutions of the KdV6 equation via bilinear Bäcklund transformation. Optik 140, 10–17 (2017)

    ADS  Google Scholar 

  56. Z.L. Zhao, B. Han, The Riemann–Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient (2+1)-dimensional KdV equation. Nonlinear Dyn. 87, 2661–2676 (2017)

    MATH  Google Scholar 

  57. G.Q. Xu, A.M. Wazwaz, Characteristics of integrability, bidirectional solitons and localized solutions for a (3+1)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 96, 1989–2000 (2019)

    MATH  Google Scholar 

  58. B. Muatjetjeja, O.P. Porogo, Reductions and exact solutions of the (2+1)-dimensional breaking soliton equation via conservation laws. Nonlinear Dyn. 89, 443–451 (2017)

    MathSciNet  MATH  Google Scholar 

  59. A.M. Wazwaz, Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations. Phys. Scr. 81, 035005 (2010)

    ADS  MATH  Google Scholar 

  60. X. Lü, B. Tian, F.H. Qi, Bell-polynomial construction of Bäcklund transformations with auxiliary independent variable for some soliton equations with one Tau-function. Nonlinear Anal. Real. 13, 1130–1138 (2012)

    MathSciNet  MATH  Google Scholar 

  61. X.Z. Liu, J. Yu, Z.M. Lou, Residual symmetry, CRE integrability and interaction solutions of the (3+1)-dimensional breaking soliton equation. Phys. Scr. 93, 085201 (2018)

    ADS  Google Scholar 

  62. J.D. Fay, Theta Functions on Riemann Surfaces (Springer, New York, 1973)

    MATH  Google Scholar 

  63. H.M. Farkas, I. Kra, Riemann Surfaces (Springer, New York, 1992)

    MATH  Google Scholar 

  64. X. Lü, New bilinear Bäcklund transformation with multisoliton solutions for the (2+1)-dimensional Sawada–Kotera model. Nonlinear Dyn. 76, 161–168 (2014)

    MATH  Google Scholar 

  65. F. Zullo, Bäcklund transformations for the elliptic Gaudin model and a Clebsch system. J. Math. Phys. 52, 073507 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  66. V. Kuznetsov, P. Vanhaecke, Bäcklund transformations for finite-dimensional integrable systems: a geometric approach. J. Geom. Phys. 44, 1–40 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  67. O. Ragnisco, F. Zullo, Bäcklund Transformations for the Kirchhoff top. SIGMA 7, 001 (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Shanxi Province Science Foundation for Youths (No. 201901D211274), Research Project Supported by Shanxi Scholarship Council of China (No. 2020-105), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0531) and the Fund for Shanxi “1331KIRT”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonglong Zhao.

Appendix

Appendix

Three basic theorems about the theory of Riemann–Bäcklund method are given in “Appendix”. For more details, the readers can see the references [44, 53, 56].

Theorem A

(Periodicity of Riemann theta function (6)) If \({\varvec{e_j}}\) is the jth column of the \(N \times N\) identity matrix \({\varvec{I}}\), \({\tau _j}\) is the column of \({\varvec{\tau }}\), and the \({\tau _{jj}}\) is the \(\left( {j,j} \right) \) entry of the \({\varvec{\tau }}\), then Riemann theta function \(\Theta \left( {{\varvec{\xi }} ,{\varvec{0}} ,{\varvec{0}}|{\varvec{\tau }} } \right) \) possesses the periodicity:

$$\begin{aligned} \begin{array}{l} \Theta \left( {{\varvec{\xi }} + {\varvec{e_j}} + \mathrm{{i}}{\varvec{\tau _j}},{\varvec{0}},{\varvec{0}}|{\varvec{\tau }} } \right) \\ \quad = \exp \left( { - 2\pi \mathrm{{i}}{\xi _j} + \pi {\tau _{jj}}} \right) \Theta \left( {{\varvec{\xi }} ,{\varvec{0}},{\varvec{0}}|{\varvec{\tau }} } \right) .\end{array} \end{aligned}$$

Then, we can conclude that the vectors \(\left\{ {{\varvec{e_j}},j = 1,2, \cdots ,N} \right\} \) and \(\left\{ {\mathrm{{i}}{\varvec{\tau _j}},j = 1,2, \cdots ,N} \right\} \) can be regarded as periods of the theta function \(\Theta \left( {{\varvec{\xi }} ,{\varvec{0}} ,{\varvec{0}}|{\varvec{\tau }} } \right) \) with multipliers 1 and \(\exp \left( { - 2\pi \mathrm{{i}}{\xi _j} + \pi {\tau _{jj}}} \right) \), respectively.

Theorem B

For a polynomial operator

$$\begin{aligned} \mathscr {H}\left( {{D_x},{D_y},{D_z},{D_t}} \right) \end{aligned}$$

about the operators \({D_x},{D_y},{D_z}\) and \({D_t}\), we have the following formula

$$\begin{aligned} \begin{array}{l} \mathscr {H}\left( {{D_x},{D_y},{D_z},{D_t}} \right) \Theta \left( {{\varvec{\xi }} ,{\varvec{\varepsilon '}},{\varvec{0}}|{\varvec{\tau }} } \right) \Theta \left( {{\varvec{\xi }} ,{\varvec{\varepsilon }} ,{\varvec{0}}|{\varvec{\tau }} } \right) \\ \quad = \sum \limits _{{\varvec{\mu }}} {C\left( {{\varvec{\varepsilon }} ,{\varvec{\varepsilon '}},{\varvec{\mu }} } \right) } \Theta \left( {2{\varvec{\xi }} ,{\varvec{\varepsilon '}} + {\varvec{\varepsilon }} ,\frac{{\varvec{\mu }} }{2}|2{\varvec{\tau }} } \right) , \end{array} \end{aligned}$$

in which

$$\begin{aligned} \begin{array}{l} C\left( {{\varvec{\varepsilon }} ,{\varvec{\varepsilon '}},{\varvec{\mu }} } \right) \\ \quad = \sum \limits _{{\varvec{n}} \in {Z^N}} {{\mathscr {H}}\left( M \right) } \exp \left[ { - 2\pi \left\langle {{\varvec{\tau }} \left( {{\varvec{n}} - \frac{{\varvec{\mu }} }{2}} \right) ,{\varvec{n}} - \frac{{\varvec{\mu }} }{2}} \right\rangle } \right. \left. {- 2\pi \mathrm{{i}}\left\langle {{\varvec{n}} - \frac{{\varvec{\mu }} }{2},{\varvec{\varepsilon '}} - {\varvec{\varepsilon }} } \right\rangle } \right] , \end{array} \end{aligned}$$

and

$$\begin{aligned} \begin{array}{l} M = \left( {4\pi \mathrm{{i}}\left\langle {n - \dfrac{\mu }{2},{\varvec{\alpha }} } \right\rangle ,4\pi \mathrm{{i}}\left\langle {n - \dfrac{\mu }{2},{\varvec{\beta }} } \right\rangle ,} \right. \left. {4\pi \mathrm{{i}}\left\langle {n - \dfrac{\mu }{2},{\varvec{\gamma }} } \right\rangle ,4\pi \mathrm{{i}}\left\langle {n - \dfrac{\mu }{2},{\varvec{\omega }} } \right\rangle } \right) . \end{array} \end{aligned}$$

If the determining equations of parameters are equal to zero

$$\begin{aligned} C\left( {{\varvec{\varepsilon }},{\varvec{\varepsilon '}} ,{\varvec{\mu }} } \right) = 0 \end{aligned}$$

for all possible combinations \({\mu _1} = 0,1;\;{\mu _2} = 0,1;\; \cdots \) \({\mu _N} = 0,1\), then \(\Theta \left( {{\varvec{\xi }} ,{\varvec{\varepsilon '}},0|{\varvec{\tau }} } \right) \) and \(\Theta \left( {{\varvec{\xi }} ,{\varvec{\varepsilon }} ,0|{\varvec{\tau }} } \right) \) are N-periodic wave solutions of the bilinear equation

$$\begin{aligned} \mathscr {H}\left( {{D_x},{D_y},{D_z},{D_t}} \right) \Theta \left( {{\varvec{\xi }} ,{\varvec{\varepsilon '}},0|{\varvec{\tau }} } \right) \Theta \left( {{\varvec{\xi }} ,{\varvec{\varepsilon }} ,0|{\varvec{\tau }} } \right) = 0. \end{aligned}$$

Theorem C

\(C\left( {{\varvec{\varepsilon }},{\varvec{\varepsilon '}} ,{\varvec{\mu }} } \right) \) and \(\mathscr {H}\left( {{D_x},{D_y},{D_z},{D_t}} \right) \) are given in theorem B. To make \(C\left( {{\varvec{\varepsilon }},{\varvec{\varepsilon '}} ,{\varvec{\mu }} } \right) = 0\), one chooses \({\varepsilon _j}^\prime - {\varepsilon _j} = \pm \frac{1}{2},\;j = 1,2, \ldots ,\) N. Then,

  1. (i)

    If \(\mathscr {H}\left( {{D_x},{D_y},{D_z},{D_t}} \right) \) is an even function in the form

    $$\begin{aligned} \mathscr {H}\left( { - {D_x}, - {D_y}, - {D_z}, - {D_t}} \right) = \mathscr {H}\left( {{D_x},{D_y},{D_z},{D_t}} \right) , \end{aligned}$$

    then \(C\left( {{\varvec{\varepsilon }},{\varvec{\varepsilon '}} ,{\varvec{\mu }} } \right) \) vanishes automatically for the case when \(\sum \nolimits _{j = 1}^N {{\mu _j}}\) is an odd number, i.e.,

    $$\begin{aligned} C\left( {{\varvec{\varepsilon }},{\varvec{\varepsilon '}} ,{\varvec{\mu }} } \right) {|_{{\varvec{\mu }}} } = 0,\quad \mathrm{{for}}\quad \sum \limits _{j = 1}^N {{\mu _j}} \mathrm{{ = 1}},\quad \,\bmod \,\;\mathrm{{2}}. \end{aligned}$$
  2. (ii)

    If \(\mathscr {H}\left( {{D_x},{D_y},{D_z},{D_t}} \right) \) is an odd function in the form

    $$\begin{aligned} \mathscr {H}\left( { - {D_x}, - {D_y}, - {D_z}, - {D_t}} \right) = -\mathscr {H}\left( {{D_x},{D_y},{D_z},{D_t}} \right) , \end{aligned}$$

    then \(C\left( {{\varvec{\varepsilon }},{\varvec{\varepsilon '}} ,{\varvec{\mu }} } \right) \) vanishes automatically for the case when \(\sum \nolimits _{j = 1}^N {{\mu _j}}\) is an even number, i.e.,

    $$\begin{aligned} C\left( {{\varvec{\varepsilon }},{\varvec{\varepsilon '}} ,{\varvec{\mu }} } \right) {|_{{\varvec{\mu }}} } = 0,\quad \mathrm{{for}}\quad \sum \limits _{j = 1}^N {{\mu _j}} = 0,\quad \,\bmod \,\;\mathrm{{2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., He, L. Bäcklund transformations and Riemann–Bäcklund method to a (3 + 1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 135, 639 (2020). https://doi.org/10.1140/epjp/s13360-020-00662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00662-8

Navigation