Skip to main content
Log in

Magnetocaloric effect simulation by Landau theory and mean-field approximation in Pr0.5Sr0.5MnO3

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The magnetocaloric effect in Pr0.5Sr0.5MnO3 (PSMO) has been successfully modeled in this work. PSMO undergoes a first-order antiferromagnetic charge ordering (AFM/CO) to a ferromagnetic (FM) transition at \( T_{CO}=T_{N}\sim 165\) K followed by a second-order ferromagnetic (FM) to paramagnetic (PM) transition at the Curie temperature, \( T_{C}\sim 255\) K. The magnetocaloric effect in PSMO has been studied by the simulation of the magnetic entropy change \( (-\Delta S_M)\) for these two transitions by developing a numerical approach based on the Landau free energy within the mean-field approximation. Simulated results agree well with the experimental ones for these two transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Palacios, C. Tomasi, R. Sáez-Puche, A.J. Dos Santos-García, F. Fernández- Martínez, R. Burriel, Phys. Rev. B 93, 064420 (2016)

    Article  ADS  Google Scholar 

  2. K.P. Skokov, D.Y. Karpenkov, M.D. Kuzmin, I.A. Radulov, T. Gottschall, B. Kaeswurm, M. Fries, O. Gutfleisch, J. Appl. Phys. 115, 17 (2014)

    Article  Google Scholar 

  3. W. Xia, J.H. Huang, N.K. Sun, C.L. Lui, Z.Q. Ou, L. Song, J. Alloys Compd. 635, 124 (2015)

    Article  Google Scholar 

  4. Y.K. Zhang, B. Yang, G. Wilde, J. Alloys Compd. 619, 12 (2015)

    Article  Google Scholar 

  5. M. Balli, B. Roberge, S. Jandl, P. Fournier, T.T.M. Palstra, A.A. Nugroho, J. Appl. Phys. 118, 073903 (2015)

    Article  ADS  Google Scholar 

  6. Y.J. Ke, X.Q. Zhang, H. Ge, Y. Ma, Z.H. Cheng, Chin. Phys. B 24, 037501 (2015)

    Article  ADS  Google Scholar 

  7. E. Brück, J. Phys D 38, R381 (2005)

    Article  ADS  Google Scholar 

  8. N.A. de Oliveira, P.J. von Ranke, Phys. Rep. 489, 89 (2010)

    Article  ADS  Google Scholar 

  9. Z.J. Mo, J. Shen, L.Q. Yan, C.C. Tang, J. Lin, J.F. Wu et al., Appl. Phys. Lett. 103, 052409 (2013)

    Article  ADS  Google Scholar 

  10. S. Gupta, K.G. Suresh, Mater. Lett. 113, 195 (2013)

    Article  Google Scholar 

  11. A. Midya, N. Khan, D. Bhoi, P. Mandal, Appl. Phys. Lett. 103, 092402 (2013)

    Article  ADS  Google Scholar 

  12. N.S. Bingham, M.H. Phan, H. Srikanth, M.A. Torija, C. Leighton, J. Appl. Phys. 106, 023909 (2009)

    Article  ADS  Google Scholar 

  13. M. Bourouina, A. Krichene, N. Chniba Boudjada, M. Khitouni, W. Boujelben, Ceram. Int. 43, 8139 (2017)

    Article  Google Scholar 

  14. V.S. Amaral, J.S. Amaral, J. Magn. & Magn. Mater. 272--276, 2104 (2004)

    Article  ADS  Google Scholar 

  15. M. Hsini, S. Hcini, S. Zemni, M. Boudard, J. Supercond. Nov. Magn. 31, 81 (2017)

    Article  Google Scholar 

  16. M. Hsini, S. Hcini, S. Zemni, J. Magn. & Magn. Mater. 466, 368 (2018)

    Article  ADS  Google Scholar 

  17. M. Balli, D. Fruchart, D. Gignoux, R. Zach, Appl. Phys. Lett. 95, 072509 (2009)

    Article  ADS  Google Scholar 

  18. J.S. Amaral, M.S. Reis, V.A. Amaral, T.M. Mendonca, J.P. Araú ji, M.A. Sa, P.B. Tvares, J.M. Vieira, J. Magn. & Magn. Mater. 290, 686 (2005)

    Article  ADS  Google Scholar 

  19. Q.Y. Dong, H.W. Zhang, J.L. Shen, J.R. Sun, B.G. Shen, J. Magn. & Magn. Mater. 319, 56 (2007)

    Article  ADS  Google Scholar 

  20. X.B. Liu, D.H. Ryan, Z. Altounian, J. Magn. & Magn. Mater. 270, 305 (2004)

    Article  ADS  Google Scholar 

  21. S. Das, T.K. Dey, Mater. Chem. Phys. 108, 220 (2008)

    Article  Google Scholar 

  22. J. Fan, L. Pi, L. Zhang, W. Tong, L. Ling, B. Hong, Y. Shi, W. Zhang, D. Lu, Y. Zhang, Phys. B 406, 2289 (2011)

    Article  ADS  Google Scholar 

  23. S. Das, T.K. Dey, J. Phys.: Condens. Matter 18, 7629 (2006)

    ADS  Google Scholar 

  24. S. Das, T.K. Dey, J. Phys. D 40, 1855 (2007)

    Article  ADS  Google Scholar 

  25. S. Das, T.K. Dey, J. Alloys Compd. 440, 30 (2007)

    Article  Google Scholar 

  26. Mariathas Judes Tagore, Landau Theory of the Structural Phase Transition in AntiFM CuFeO_2 (Canada, 2008)

  27. V.S. Amaral, J.P. Araújo, Yu.G. Pogorelov, J.B. Sousa, P.B. Tavares et al., J. Appl. Phys. 93, 7646 (2003)

    Article  ADS  Google Scholar 

  28. Rafael Agra et al., Eur. J. Phys. 27, 407 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hsini.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsini, M., Hcini, S. & Zemni, S. Magnetocaloric effect simulation by Landau theory and mean-field approximation in Pr0.5Sr0.5MnO3. Eur. Phys. J. Plus 134, 588 (2019). https://doi.org/10.1140/epjp/i2019-12975-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12975-4

Navigation