Skip to main content
Log in

On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, the buckling response of nanobeams on the basis of the Euler-Bernoulli beam model with the von Kármán geometrical nonlinearity using the modified couple stress theory is investigated under various types of thermal loading and electrical and magnetic fields. The modified couple stress theory, used in this paper, is capable to consider the higher-order electro-mechanical coupling effects besides size effects. The governing equations and boundary conditions are derived using minimum potential energy principle. The nanobeam is assumed to be under two types of thermal loading, uniform and linear, along thickness direction. The buckling response of nanobeams is studied using the Galerkin method and the effects of different parameters, such as size effect, length and thickness, on the critical buckling temperature are shown. The buckling behavior of nanobeam is illustrated significantly size-dependent particularly with an increase in thickness and decrease in length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.W. Nan, Phys. Rev. B 50, 6082 (1994)

    Article  ADS  Google Scholar 

  2. S. Razavi, A. Shooshtari, Compos. Struct. 119, 377 (2015)

    Article  Google Scholar 

  3. C. Liu, L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Compos. Struct. 106, 167 (2013)

    Article  Google Scholar 

  4. F. Ebrahimi, E. Salari, Smart Mater. Struct. 24, 125007 (2015)

    Article  ADS  Google Scholar 

  5. F. Ebrahimi, A. Rastgo, Thin-Walled Struct. 46, 1402 (2008)

    Article  Google Scholar 

  6. A. Kumaravel, J. Jones Praveen, R. Sethuraman, A. Arockiarajan, Appl. Mech. Mater. 592, 2071 (2014)

    Article  Google Scholar 

  7. S. Xu, Y. Shi, S.G. Kim, Nanotechnology 17, 4497 (2006)

    Article  ADS  Google Scholar 

  8. F. Mehralian, Y.T. Beni, R. Ansari, Int. J. Mech. Sci. 119, 155 (2016)

    Article  Google Scholar 

  9. N. Ebrahimi, Y.T. Beni, Steel Compos. Struct. 22, 1301 (2016)

    Article  Google Scholar 

  10. F. Mehralian, Y.T. Beni, R. Ansari, Compos. Struct. 152, 45 (2016)

    Article  Google Scholar 

  11. H. Razavi, A.F. Babadi, Y.T. Beni, Compos. Struct. 160, 1299 (2017)

    Article  Google Scholar 

  12. S.F. Dehkordi, Y.T. Beni, Int. J. Mech. Sci. 128, 125 (2017)

    Article  Google Scholar 

  13. F. Mehralian, Y.T. Beni, J. Braz. Soc. Mech. Sci. Eng. 40, 27 (2018)

    Article  Google Scholar 

  14. R. Ansari, H. Rouhi, S. Sahmani, Physica E 44, 373 (2011)

    Article  ADS  Google Scholar 

  15. A. Daneshmehr, A. Rajabpoor, A. Hadi, Int. J. Eng. Sci. 95, 23 (2015)

    Article  Google Scholar 

  16. L.L. Ke, Y.S. Wang, Smart Mater. Struct. 21, 025018 (2012)

    Article  ADS  Google Scholar 

  17. Y.T. Beni, M. Abadyan, A. Koochi, Phys. Scr. 84, 065801 (2011)

    Article  ADS  Google Scholar 

  18. H. Zeighampour, Y.T. Beni, F. Mehralian, Acta Mech. 226, 2607 (2015)

    Article  MathSciNet  Google Scholar 

  19. H. Zeighampour, Y.T. Beni, Arch. Appl. Mech. 89, 539 (2015)

    Article  Google Scholar 

  20. F. Kheibari, Y.T. Beni, Mater. Des. 114, 572 (2017)

    Article  Google Scholar 

  21. R. Omidian, Y.T. Beni, F. Mehralian, Eur. Phys. J. Plus 132, 481 (2017)

    Article  Google Scholar 

  22. R.A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962)

    Article  Google Scholar 

  23. R.D. Mindlin, H.F. Tiersten, Arch. Ration. Mech. Anal. 11, 415 (1962)

    Article  Google Scholar 

  24. W.T. Koiter, Proc. K. Ned. Akad. Wet. 67, 17 (1964)

    Google Scholar 

  25. Y.T. Beni, I. Karimipöur, M. Abadyan, J. Mech. Sci. Technol. 28, 3749 (2014)

    Article  Google Scholar 

  26. A. Anthoine, Int. J. Solids Struct. 37, 1003 (2000)

    Article  Google Scholar 

  27. M. Mohammad-Abadi, A.R. Daneshmehr, Int. J. Eng. Sci. 74, 1 (2014)

    Article  Google Scholar 

  28. S.K. Park, X.L. Gao, J. Micromech. Microeng. 16, 2355 (2006)

    Article  ADS  Google Scholar 

  29. J.N. Reddy, J. Mech. Phys. Solids 59, 2382 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. Z. Belabed, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, O.A. Bég, Composites Part B: Eng. 60, 274 (2014)

    Article  Google Scholar 

  31. Y.T. Beni, J. Mech. 33, 289 (2017)

    Article  Google Scholar 

  32. Y. Tadi Beni, J. Intell. Mater. Syst. Struct. 27, 2199 (2016)

    Article  Google Scholar 

  33. A. Nateghi, M. Salamat-talab, Compos. Struct. 96, 97 (2013)

    Article  Google Scholar 

  34. B. Akgöz, Ö. Civalek, Int. J. Eng. Sci. 85, 90 (2014)

    Article  Google Scholar 

  35. L.L. Ke, Y.S. Wang, Physica E 63, 52 (2014)

    Article  ADS  Google Scholar 

  36. L. Xu, S. Shen, Int. J. Appl. Mech. 5, 1350015 (2013)

    Article  Google Scholar 

  37. Y.T. Beni, Mech. Res. Commun. 75, 67 (2016)

    Article  Google Scholar 

  38. Y. Ootao, Y. Tanigawa, Compos. Struct. 68, 471 (2005)

    Article  Google Scholar 

  39. A.A. Khdeir, Acta Mech. 149, 201 (2001)

    Article  Google Scholar 

  40. F. Mehralian, Y.T. Beni, J. Mech. Sci. Technol. 31, 1773 (2017)

    Article  Google Scholar 

  41. M.A.A. Meziane, H.H. Abdelaziz, A. Tounsi, J. Sandwich Struct. Mater. 16, 293 (2014)

    Article  Google Scholar 

  42. F.A.C.M. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Article  Google Scholar 

  43. D.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51, 1477 (2003)

    Article  ADS  Google Scholar 

  44. X.F. Li, B.L. Wang, K.Y. Lee, J. Appl. Phys. 105, 074306 (2009)

    Article  ADS  Google Scholar 

  45. K.A. Lazopoulos, A.K. Lazopoulos, Eur. J. Mech. A/Solids 29, 837 (2010)

    Article  ADS  Google Scholar 

  46. L.E. Cross, J. Mater. Sci. 41, 53 (2006)

    Article  ADS  Google Scholar 

  47. Y. Kiani, S. Taheri, M.R. Eslami, J. Therm. Stresses 34, 835 (2011)

    Article  Google Scholar 

  48. Y. Kiani, M.R. Eslami, Int. J. Mech. Mater. Des. 6, 229 (2010)

    Article  Google Scholar 

  49. A. Tounsi, A. Semmah, A.A. Bousahla, J. Nanomech. Micromech. 3, 37 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alibeigi, B., Tadi Beni, Y. & Mehralian, F. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams. Eur. Phys. J. Plus 133, 133 (2018). https://doi.org/10.1140/epjp/i2018-11954-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11954-7

Navigation