Skip to main content
Log in

An effective comparison involving a novel spectral approach and finite difference method for the Schrödinger equation involving the Riesz fractional derivative in the quantum field theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper displays the approach of the time-splitting Fourier spectral (TSFS) technique for the linear Riesz fractional Schrödinger equation (RFSE) in the semi-classical regime. The splitting technique is shown to be unconditionally stable. Further a suitable implicit finite difference discretization of second order has been manifested for the RFSE where the Riesz derivative has been discretized via an approach of fractional centered difference. Moreover the stability analysis for the implicit scheme has also been presented here via von Neumann analysis. The L2-norm and \(L^{\infty}\)-norm errors are calculated for \(\vert u(x,t)\vert^{2}\), Re\((u(x,t))\) and Im\((u(x,t))\) for various cases. The results obtained by the methods are further tabulated for the absolute errors for \(\vert u(x,t)\vert^{2}\). Furthermore the graphs are depicted showing comparison of \(\vert u(x,t)\vert^{2}\) by both techniques. The derivatives are taken here in the context of the Riesz fractional sense. Apart from that, the comparative study put forth in the following section via tables and graphs between the implicit second-order finite difference method (IFDM) and the TSFS method is for the purpose of investigating the efficiency of the results obtained. Moreover the stability analysis of the presented techniques manifesting their unconditional stability makes the proposed approach more competing and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Miller, B. Ross, An Introduction to Fractional Calculus and Fractional Differential Equations (John Wiley, New York, NY, USA, 1993)

  2. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

  3. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, NY, USA, 1974)

  4. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordan and Breach, New York, NY, USA, 1993)

  5. J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (Springer, Netherlands, 2007)

  6. Q. Wang, Appl. Math. Comput. 182, 1048 (2006)

    MathSciNet  Google Scholar 

  7. M. Dehghan, J. Manafian, A. Saadatmandi, Z. Naturforsch. A 65, 935 (2010)

    Article  ADS  Google Scholar 

  8. A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010)

    Article  MathSciNet  Google Scholar 

  9. Y. Zhang, J. Comput. Nonlinear Dyn. 8, 041020 (2013)

    Article  Google Scholar 

  10. C. Celik, M. Duman, J. Comput. Phys. 231, 1743 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Aboelenen, Nonlinear Dyn. (2017) https://doi.org/10.1007/s11071-018-4063-y

  12. T. Aboelenen, Commun. Nonlinear Sci. Numer. Simul. 54, 428 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Aboelenen, H.M. El-Hawary, Comput. Math. Appl. 73, 1197 (2017)

    Article  MathSciNet  Google Scholar 

  14. H. Wang, J. Comput. Phys. 205, 88 (2007)

    Google Scholar 

  15. D. Bai, J. Wang, Commun. Nonlinear Sci. Numer. Simul. 17, 1201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Bao, S. Jin, P.A. Markowich, J. Comput. Phys. 175, 487 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. P.A. Markowich, P. Pietra, C. Pohl, Numer. Math. 81, 595 (1999)

    Article  MathSciNet  Google Scholar 

  18. G.M. Muslu, H.A. Erbay, Comput. Math. Appl. 45, 503 (2003)

    Article  MathSciNet  Google Scholar 

  19. H. Borluk, G.M. Muslu, H.A. Erbay, Math. Comput. Simul. 74, 113 (2007)

    Article  Google Scholar 

  20. K.A. Bagrinovski, S.K. Godunov, Dokl. Akad. Nauk SSSR 115, 413 (1957)

    Google Scholar 

  21. G. Strang, SIAM J. Numer. Anal. 5, 506 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  22. G.I. Marchuk, Methods of Splitting (Nauka, Moscow, 1998)

  23. D. Bai, L. Zhang, Phys. Lett. A 373, 2237 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Saha Ray, Z. Naturforsch. A 70, 659 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Patra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, A. An effective comparison involving a novel spectral approach and finite difference method for the Schrödinger equation involving the Riesz fractional derivative in the quantum field theory. Eur. Phys. J. Plus 133, 104 (2018). https://doi.org/10.1140/epjp/i2018-11922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11922-3

Navigation