Skip to main content
Log in

Ion-acoustic rogue waves and breathers in relativistically degenerate electron-positron plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we employ a weakly relativistic fluid model to study the nonlinear amplitude modulation of electrostatic waves in an unmagnetized electron-positron-ion plasma. It is assumed that the degeneracy pressure law for electrons and positrons follows the Chandrasekhar limit of state whereas ions are warm and classical. The hydrodynamic approach along with the perturbation method have been applied to obtain the corresponding nonlinear Schrödinger equation (NLSE) in which nonlinearity is in balance with the dispersive terms. Using the NLSE, we could evaluate the modulational instability to show that various types of localized ion acoustic excitations exist in the form of either bright-type envelope solitons or dark-type envelope solitons. The regions of the stable and unstable envelope wave have been confined punctually for various regimes. Furthermore, it is proposed that the exact solutions of the NLSE for breather waves are the rogue waves (RWs), Akhmediev breather (AB), and Kuznetsov-Ma breather (KM) soliton. In order to show that the characteristics of breather structures is influenced by the plasma parameters (namely, relativistic parameter, positron concentration, and ionic temperature), the relevant numerical analysis of the NLSE is examined. In particular, it is observed that by increasing the values of the mentioned plasma parameters, the amplitude of the RWs will be decreased. Our results help researchers to explain the formation and dynamics of nonlinear electrostatic excitations in super dense astrophysical regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Shukla, B. Dasgupta, P. Sakanaka, Phys. Lett. A 269, 144 (2000)

    Article  ADS  Google Scholar 

  2. S. Mahmood, A. Mushtaq, H. Saleem, New J. Phys. 5, 28 (2003)

    Article  ADS  Google Scholar 

  3. P. Shukla, B. Eliasson, L. Stenflo, Phys. Rev. E 84, 037401 (2011)

    Article  ADS  Google Scholar 

  4. M. Momeni, Int. J. Mod. Phys. C 26, 1550058 (2015)

    Article  ADS  Google Scholar 

  5. A. Abdikian, S. Mahmood, Phys. Plasmas 23, 122303 (2016)

    Article  ADS  Google Scholar 

  6. S.I. Popel, S.V. Vladimirov, P.K. Shukla, Phys. Plasmas 2, 716 (1995)

    Article  ADS  Google Scholar 

  7. S. Mahmood, N. Akhtar, H. Ur-Rehman, Phys. Scr. 83, 035505 (2011)

    Article  ADS  Google Scholar 

  8. C. Grabbe, J. Geophys. Res. 94, 17299 (1989)

    Article  ADS  Google Scholar 

  9. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  10. E. El-Shamy, Phys. Rev. E 91, 033105 (2015)

    Article  ADS  Google Scholar 

  11. E. El-Shamy, R. Al-Chouikh, A. El-Depsy, N. Al-Wadie, Phys. Plasmas 23, 122122 (2016)

    Article  Google Scholar 

  12. B. Ghosh, S. Banerjee, J. Plasma Phys. 81, 905810308 (2015)

    Article  Google Scholar 

  13. B. Eliasson, P. Shukla, EPL 97, 15001 (2012)

    Article  ADS  Google Scholar 

  14. A. Abdikian, Phys. Plasmas 24, 052123 (2017)

    Article  ADS  Google Scholar 

  15. E.P. Liang, S.C. Wilks, M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)

    Article  ADS  Google Scholar 

  16. G. Williams, I. Kourakis, Phys. Plasmas 20, 122311 (2013)

    Article  ADS  Google Scholar 

  17. W. Masood, B. Eliasson, A. Qamar, Phys. Plasmas 20, 092305 (2013)

    Article  ADS  Google Scholar 

  18. S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207 (1935)

    Article  ADS  Google Scholar 

  19. S. Chandrasekhar, Astrophys. J. 74, 81 (1931)

    Article  ADS  Google Scholar 

  20. S. Chandrasekhar, Philos. Mag. 11, 592 (1931)

    Article  Google Scholar 

  21. M. McKerr, F. Haas, I. Kourakis, Phys. Plasmas 23, 052120 (2016)

    Article  ADS  Google Scholar 

  22. R. Sabry, W. Moslem, P. Shukla, Plasma Phys. Control. Fusion 54, 035010 (2012)

    Article  ADS  Google Scholar 

  23. C. Surko, T. Murphy, Phys. Fluids B 2, 1372 (1990)

    Article  ADS  Google Scholar 

  24. S. Ali, W. Moslem, P. Shukla, R. Schlickeiser, Phys. Plasmas 14, 082307 (2007)

    Article  ADS  Google Scholar 

  25. A. Dubinov, M. Sazonkin, Plasma Phys. Rep. 35, 14 (2009)

    Article  ADS  Google Scholar 

  26. S. Chandrasekhar, Rev. Mod. Phys. 56, 137 (1984)

    Article  ADS  Google Scholar 

  27. M. Akbari-Moghanjoughi, Phys. Plasmas 17, 092304 (2010) and references therein

    Article  ADS  Google Scholar 

  28. S. El-Tantawy, Astrophys. Space Sci. 361, 1 (2016)

    Article  Google Scholar 

  29. S. El-Tantawy, A. Wazwaz, S. Ali Shan, Phys. Plasmas 24, 022105 (2017)

    Article  ADS  Google Scholar 

  30. S.K. El-Labany, W.F. El-Taibany, N. Zedan, Phys. Plasmas 22, 073702 (2015)

    Article  ADS  Google Scholar 

  31. D. Peregrine, J. Aust. Math. Soc. B Appl. Math. 25, 16 (1983)

    Article  Google Scholar 

  32. L. Draper, Weather 21, 2 (1966)

    Article  ADS  Google Scholar 

  33. S. El-Labany, M.A. Krim, S. El-Warraki, W. El-Taibany, Chin. Phys. 12, 759 (2003)

    Article  ADS  Google Scholar 

  34. A. Misra, P.K. Shukla, Phys. Plasmas 15, 122107 (2008)

    Article  ADS  Google Scholar 

  35. N.C. Lee, Phys. Plasmas 17, 082310 (2010)

    Article  ADS  Google Scholar 

  36. N.C. Lee, Phys. Plasmas 19, 082303 (2012)

    Article  ADS  Google Scholar 

  37. A. Rasheed, G. Murtaza, N.L. Tsintsadze, Phys. Rev. E 82, 016403 (2010)

    Article  ADS  Google Scholar 

  38. S. El-Tantawy, S. Ali, R. Maroof, A. Wazwaz, S. El-Labany, Indian J. Phys. (2017) DOI:10.1007/s12648-017-0982-6

  39. S. El-Tantawy, W. Moslem, Phys. Plasmas 21, 052112 (2014)

    Article  ADS  Google Scholar 

  40. S. El-Tantawy, E. El-Awady, M. Tribeche, Phys. Plasmas 22, 113705 (2015)

    Article  ADS  Google Scholar 

  41. S. El-Tantawy, E. El-Awady, R. Schlickeiser, Astrophys. Space Sci. 360, 1 (2015)

    Article  Google Scholar 

  42. S. El-Tantawy, A. Wazwaz, R. Schlickeiser, Plasma Phys. Control. Fusion 57, 125012 (2015)

    Article  ADS  Google Scholar 

  43. S.A. El-Tantawy, Phys. Lett. A 381, 787 (2017)

    Article  ADS  Google Scholar 

  44. S. El-Tantawy, A. Wazwaz, A.-u. Rahman, Phys. Plasmas 24, 022126 (2017)

    Article  ADS  Google Scholar 

  45. W. Masood, B. Eliasson, Phys. Plasmas 18, 034503 (2011)

    Article  ADS  Google Scholar 

  46. D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  47. Q. Haque, S. Mahmood, A. Mushtaq, Phys. Plasmas 15, 082315 (2008)

    Article  ADS  Google Scholar 

  48. M. Irfan, S. Ali, A.M. Mirza, Y. Wang, J. Plasma Phys. 81, 905810604 (2015)

    Article  Google Scholar 

  49. S. El-Tantawy, T. Aboelenen, Phys. Plasmas 24, 052118 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdikian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdikian, A., Ismaeel, S. Ion-acoustic rogue waves and breathers in relativistically degenerate electron-positron plasmas. Eur. Phys. J. Plus 132, 368 (2017). https://doi.org/10.1140/epjp/i2017-11654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11654-x

Navigation