Skip to main content
Log in

Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

An analytical solution to the flexural vibration of a weakened nanobeam on the basis of the nonlocal modified couple stress theory including surface effects is under consideration. In this investigation nanobeams are studied within the framework of the Euler-Bernoulli beam theory. The nanobeam is weakened by a crack modeled as a rotational spring at the crack position. This assumption divides the beam into two sections, invoking additional conditions on the beam. The governing equations and boundary conditions for the beam are obtained by applying the Hamilton principle. The natural frequencies for the cracked nanobeam are determined to investigate the effects of crack severity, crack position, nonlocal parameter, material length scale parameter and surface effect parameters. It has been found that the mentioned parameters have considerable effects on stiffness and have a significant impact the dynamic behavior of the nanobeam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.E. Lyshevski, MEMS and NEMS: Systems, Devices, and Structures (CRC Press, 2002)

  2. A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)

    Article  Google Scholar 

  3. A.C. Eringen, D.G.B. Edelen, Int. J. Eng. Sci. 10, 233 (1972)

    Article  Google Scholar 

  4. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  5. A.C. Eringen, Nonlocal Continuum Field Theories (Springer-Verlag, New York, 2002) pp. XVI, 376

  6. R.D. Mindlin, H.F. Tiersten, Arch. Ration. Mech. Anal. 11, 415 (1962)

    Article  Google Scholar 

  7. R.D. Mindlin, Exp. Mech. 3, 1 (1963)

    Article  Google Scholar 

  8. F. Yang, A. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Article  Google Scholar 

  9. M.E. Gurtin, A.I. Murdoch, Arch. Ration. Mech. Anal. 57, 291 (1975)

    Article  Google Scholar 

  10. M.E. Gurtin, A.I. Murdoch, Int. J. Solids Struct. 14, 431 (1978)

    Article  Google Scholar 

  11. M. Simşek, J.N. Reddy, Int. J. Eng. Sci. 64, 37 (2013)

    Article  Google Scholar 

  12. M. Simşek, Compos. Struct. 112, 264 (2014)

    Article  Google Scholar 

  13. M. Ghadiri, N. Shafiei, Acta Astron. 121, 221 (2016)

    Article  Google Scholar 

  14. R. Sourki, S.A.H. Hoseini, Appl. Phys. A 122, 1 (2016)

    Article  Google Scholar 

  15. G. Romano, R. Barretta, M. Diaco, Continuum Mech. Thermodyn. 28, 1659 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Z. Misagh, H. Seyed Amirhosein, Smart Mater. Struct. 25, 085005 (2016)

    Article  Google Scholar 

  17. M. Zarepour, S.A. Hosseini, M.R. Kokaba, Microsyst. Technol. (2016) DOI:10.1007/s00542-016-2935-y

  18. M. Simşek, Comput. Mater. Sci. 50, 2112 (2011)

    Article  Google Scholar 

  19. X.-w. Lei, T. Natsuki, J.-x. Shi, Q.-q. Ni, Compos. Part B: Eng. 43, 64 (2012)

    Article  Google Scholar 

  20. H.-T. Thai, Int. J. Eng. Sci. 52, 56 (2012)

    Article  MathSciNet  Google Scholar 

  21. B. Uymaz, Compos. Struct. 105, 227 (2013)

    Article  Google Scholar 

  22. S.M. Bağdatli, Compos. Part B: Eng. 80, 43 (2015)

    Article  Google Scholar 

  23. C. Li, S. Li, L. Yao, Z. Zhu, Appl. Math. Model. 39, 4570 (2015)

    Article  MathSciNet  Google Scholar 

  24. M.A. Eltaher, M.E. Khater, S.A. Emam, Appl. Math. Model. 40, 4109 (2016)

    Article  MathSciNet  Google Scholar 

  25. N. Togun, S.M. Bağdatli, Compos. Part B: Eng. 97, 255 (2016)

    Article  Google Scholar 

  26. P. Kasirajan, R. Amirtham, J.N. Reddy, Int. J. Non-Linear Mech. 76, 100 (2015)

    Article  ADS  Google Scholar 

  27. S. Hosseini-Hashemi, R. Nazemnezhad, M. Bedroud, Appl. Math. Model. 38, 3538 (2014)

    Article  MathSciNet  Google Scholar 

  28. D. Zhao, J. Liu, L. Wang, Int. J. Mech. Sci. 113, 184 (2016)

    Article  Google Scholar 

  29. C. Liu, R.K.N.D. Rajapakse, IEEE Trans. Nanotechnol. 9, 422 (2010)

    Article  ADS  Google Scholar 

  30. V.R. Hiwarkar, V.I. Babitsky, V.V. Silberschmidt, J. Sound Vib. 331, 3587 (2012)

    Article  ADS  Google Scholar 

  31. J. Loya, J. López-Puente, R. Zaera, J. Fernández-Sáez, J. Appl. Phys. 105, 044309 (2009)

    Article  ADS  Google Scholar 

  32. K. Torabi, J. Nafar Dastgerdi, Thin Solid Films 520, 6595 (2012)

    Article  ADS  Google Scholar 

  33. H. Roostai, M. Haghpanahi, Appl. Math. Model. 38, 1159 (2014)

    Article  MathSciNet  Google Scholar 

  34. J.-C. Hsu, H.-L. Lee, W.-J. Chang, Curr. Appl. Phys. 11, 1384 (2011)

    Article  ADS  Google Scholar 

  35. B.S.M. Hasheminejad, B. Gheshlaghi, Y. Mirzaei, S. Abbasion, Thin Solid Films 519, 2477 (2011)

    Article  ADS  Google Scholar 

  36. K. Wang, B. Wang, J. Vib. Control 21, 2452 (2015)

    Article  MathSciNet  Google Scholar 

  37. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Article  Google Scholar 

  38. R.E. Miller, V.B. Shenoy, Nanotechnology 11, 139 (2000)

    Article  ADS  Google Scholar 

  39. G. Romano, R. Barretta, M. Diaco, F. Marotti de Sciarra, Int. J. Mech. Sci. 121, 151 (2017)

    Article  Google Scholar 

  40. E. Benvenuti, A. Simone, Mech. Res. Commun. 48, 46 (2013)

    Article  Google Scholar 

  41. G. Romano, R. Barretta, Int. J. Eng. Sci. 109, 240 (2016)

    Article  Google Scholar 

  42. G. Romano, R. Barretta, Compos. Part B: Eng. 114, 184 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourki, R., Hosseini, S.A. Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam. Eur. Phys. J. Plus 132, 184 (2017). https://doi.org/10.1140/epjp/i2017-11458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11458-0

Navigation