Skip to main content
Log in

Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Ezzat, A.A. El-Bary, Int. J. Therm. Sci. 100, 305 (2016)

    Article  Google Scholar 

  2. J.B.J. Fourier, Théorie Analytique de la Chaleur (F. Didot, Paris, 1822)

  3. C. Cattaneo, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 3, 83 (1948)

    MathSciNet  Google Scholar 

  4. C.I. Christov, Mech. Res. Commun. 36, 481 (2009)

    Article  MathSciNet  Google Scholar 

  5. M. Ciarletta, B. Straughan, Mech. Res. Commun. 37, 445 (2010)

    Article  Google Scholar 

  6. B. Straughan, Int. J. Heat Mass Transf. 53, 95 (2010)

    Article  Google Scholar 

  7. B. Straughan, Phys. Lett. A 377, 2531 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. B. Straughan, Phys. Lett. A 374, 2667 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Han et al., Appl. Math. Lett. 38, 87 (2014)

    Article  MathSciNet  Google Scholar 

  10. T. Hayat et al., PLOS ONE 11, e0155185 (2016)

    Article  MathSciNet  Google Scholar 

  11. M. Khan, W.A. Khan, J. Mol. Liq. 221, 651 (2016)

    Article  Google Scholar 

  12. W.A. Khan, J. Mol. Liq. (2016) DOI:10.1016/j.molliq.2016.09.027

  13. T. Hayat et al., AIP Adv. 5, 087159 (2015)

    Article  ADS  Google Scholar 

  14. T. Hayat et al., J. Mol. Liq. 223, 566 (2016)

    Article  Google Scholar 

  15. T. Hayat et al., J. Mol. Liq. 220, 49 (2016)

    Article  Google Scholar 

  16. T. Hayat et al., Int. J. Heat Mass Transf. 99, 702 (2016)

    Article  Google Scholar 

  17. M. Waqas et al., J. Mol. Liq. 220, 642 (2016)

    Article  Google Scholar 

  18. M.M. Khader, A.M. Megahed, J. Appl. Mech. Tech. Phys. 54, 444 (2013)

    Article  ADS  Google Scholar 

  19. N.T.M. Eldabe et al., J. Egypt Math. Soc. 20, 139 (2012)

    Article  MathSciNet  Google Scholar 

  20. T. Javed et al., Chem. Eng. Commun. 200, 327 (2013)

    Article  Google Scholar 

  21. A. Riaz et al., Int. J. Biomath. 8, 1550081 (2015)

    Article  MathSciNet  Google Scholar 

  22. M.I. Khan, Alex. Eng. J. (2016) DOI:10.1016/j.aej.2016.04.037

  23. R. Ellahi et al., Int. J. Numer. Methods Heat Fluid Flow 26, 1433 (2016)

    Article  Google Scholar 

  24. T. Hayat, J. Aerosp. Eng. (2016) DOI:10.1061/(ASCE)AS.1943-5525.0000674

  25. T. Fang et al., Appl. Math. Comput. 218, 7214 (2012)

    Article  Google Scholar 

  26. M.M. Khader, A.M. Megahed, Eur. Phys. J. Plus 100, 128 (2013)

    Google Scholar 

  27. M.S.A. Wahed et al., Appl. Math. Comput. 254, 49 (2015)

    Article  MathSciNet  Google Scholar 

  28. T. Hayat, J. Mol. Liq. (2016) DOI:10.1016/j.molliq.2016.08.104

  29. S.J. Liao, Homotopy analysis method in nonlinear differential equations (Springer & Higher Education Press, Heidelberg, 2012)

  30. M. Sheikholeslami et al., J. Mol. Liq. 194, 30 (2014)

    Article  Google Scholar 

  31. S. Abbasbandy et al., Int. J. Numer. Methods Heat Fluid Flow 24, 390 (2014)

    Article  MathSciNet  Google Scholar 

  32. T. Hayat et al., Sci. Iran. B 21, 682 (2014)

    Google Scholar 

  33. M. Nawaz et al., Int. J. Numer. Methods Heat Fluid Flow 25, 665 (2015)

    Article  MathSciNet  Google Scholar 

  34. J. Sui et al., Int. J. Heat Mass Transf. 85, 1023 (2015)

    Article  Google Scholar 

  35. T. Hayat et al., J. Hydrol. Hydromech. 63, 311 (2015)

    Article  Google Scholar 

  36. T. Hayat et al., J. Mol. Liq. 220, 200 (2016)

    Article  Google Scholar 

  37. T. Hayat et al., J. Mol. Liq. 215, 704 (2016)

    Article  Google Scholar 

  38. S.A. Shehzad et al., J. Appl. Fluid Mech. 9, 1437 (2016)

    Google Scholar 

  39. M. Waqas et al., Int. J. Heat Mass Transf. 102, 766 (2016)

    Article  Google Scholar 

  40. M. Khan et al., Int. J. Heat Mass Transf. 101, 570 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Waqas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Zubair, M., Ayub, M. et al. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux. Eur. Phys. J. Plus 131, 355 (2016). https://doi.org/10.1140/epjp/i2016-16355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16355-4

Navigation