Skip to main content
Log in

Anchoring functional molecules on TiO2 surfaces: A comparison between the carboxylic and the phosphonic acid group

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The adsorption of formic acid on clean TiO2 anatase (101) and rutile (110) surfaces is studied by density-functional-based methods and compared with the results for coupling related phosphonic acids to titania surfaces. The preferred adsorption mode of the formic acid on both surfaces is a dissociative bridging bidentate complex, which is similar to the adsorption geometry of phosphonic acid. Higher adsorption energies and shorter Ti-O bond lengths indicate that phosphonic acid binds more strongly to TiO2 than formic acid. The preference for the bidentate adsorption mode is supported by a detailed analysis of the charge distribution in the adsorption complexes. The strong interfacial electronic coupling between the adsorbate orbitals and the electronic states of the anatase (101) surface slab leads to additional states in the band gap of the clean surface. For rutile (110) no or only weak coupling of the adsorbate orbitals and the surface states occurs at the band edges, which leads to an increase of the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, Oxford, 2003).

  2. A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Clarendon Press, Oxford, 1995).

  3. M. Rühle, T. Gemming, O. Kienzle, R. Schweinfest, Interface science - knowing more about less, in Electron Microscopy and Analysing 1999, edited by C.J. Kiely, IOP Conf. Ser., Vol. 161 (IOP, Bristol, 1999) pp. 1--8

  4. J.H. Stoneham, A.M. Harding, Nat. Mater. 2, 77 (2003).

    Article  ADS  Google Scholar 

  5. M.W. Finnis, Acta Metall. Mater. 40, 25 (1992).

    Article  Google Scholar 

  6. S. Gemming, M. Schreiber, Theoretical investigation of interfaces, in Materials for Tomorrow, edited by S. Gemming, M. Schreiber, J.-B. Suck (Springer, Berlin-Heidelberg-New York, 2007) pp. 91--122

  7. S. Köstlmeier, C. Elsässer, B. Meyer, M.W. Finnis, Phys. Stat. Sol. A 166, 417 (1998).

    Article  ADS  Google Scholar 

  8. S. Köstlmeier, C. Elsässer, J. Phys.: Condens. Matter 12, 1209 (2000).

    Article  Google Scholar 

  9. A. Ohtomo, H.Y. Hwang, Nature 427, 423 (2004).

    Article  ADS  Google Scholar 

  10. S. Gemming, G. Seifert, Acta Mater. 16, 4299 (2006).

    Article  Google Scholar 

  11. R. Pentcheva, W.E. Pickett, Phys. Rev. B 74, 035112 (2006).

    Article  ADS  Google Scholar 

  12. R. Pentcheva, W.E. Pickett, Phys. Rev. B 78, 205106 (2008).

    Article  ADS  Google Scholar 

  13. R. Pentcheva, W.E. Pickett, Phys. Rev. Lett. 102, 107602 (2009).

    Article  ADS  Google Scholar 

  14. U. Schwingenschlögl, C. Schuster, EPL 86, 27005 (2009).

    Article  ADS  Google Scholar 

  15. S. Thiel, C.W. Schneider, L. Fitting Kourkoutis, D.A. Muller, N. Reyren, A.D. Caviglia, S. Gariglio, J.-M. Triscone, J. Mannhart, Phys. Rev. Lett. 102, 046809 (2009).

    Article  ADS  Google Scholar 

  16. F. Hanke, J. Comp. Chem. 32, 1424 (2011).

    Article  Google Scholar 

  17. L. Burns, A. Vazquez-Mayagoitia, B. Sumpter, C. Sherrill, J. Chem. Phys. 134, 084107 (2011).

    Article  ADS  Google Scholar 

  18. A. Abbasi, R. Scholz, J. Phys. Chem. C 113, 19897 (2009).

    Article  Google Scholar 

  19. J. Kong, Z. Gan, E. Proynov, M. Freindorf, T. Furlani, Phys. Rev. A 79, 042510 (2009).

    Article  ADS  Google Scholar 

  20. J. Grafenstein, D. Cremer, J. Chem. Phys. 130, 124105 (2009).

    Article  ADS  Google Scholar 

  21. K. Morawetz, S. Gemming, R. Luschtinetz, L.M. Eng, G. Seifert, A. Kenfack, New J. Phys. 10, 103014 (2008).

    Article  ADS  Google Scholar 

  22. K. Morawetz, S. Gemming, R. Luschtinetz, T. Kunze, P. Lipavsky, L.M. Eng, G. Seifert, P. Milde, V. Pankoke, Phys. Rev. B 79, 085405 (2009).

    Article  ADS  Google Scholar 

  23. S. Gemming, T. Kunze, K. Morawetz, V. Pankoke, R. Luschtinetz, G. Seifert, Eur. Phys. J. ST 177, 83 (2009).

    Article  Google Scholar 

  24. H. Emmerich, The Diffuse Interface Approach in Materials Science, 1st edition (Springer Verlag, Berlin, 2011) Number 3-642-05583-4

  25. J.E. Taylor, J.W. Cahn, Physica D 112, 381 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. H. Emmerich, J. Phys.: Condens. Matter 21, 464103 (2009).

    Article  ADS  Google Scholar 

  27. R. Siquieri, H. Emmerich, Philos. Mag. Lett. 87, 829 (2007).

    Article  ADS  Google Scholar 

  28. I. Singer-Loginova, H.M. Singer, Rep. Prog. Phys. 71, 106501 (2008).

    Article  ADS  Google Scholar 

  29. B. Li, J. Lowengrub, A. Rätz, A. Voigt, Commun. Comput. Phys. 6, 433 (2009).

    MathSciNet  Google Scholar 

  30. M. Tang, W.C. Carter, R.M. Cannon, Phys. Rev. B 73, 024102 (2006).

    Article  ADS  Google Scholar 

  31. J.A. Warren, R. Kobayashi, A.E. Lobovsky, W.C. Carter, Acta Mater. 51, 6035 (2003).

    Article  Google Scholar 

  32. N. Provatas, M. Greenwood, B. Athreya, N. Goldenfeld, J. Dantzig, Int. J. Mod. Phys. B 19, 4525 (2005).

    Article  ADS  Google Scholar 

  33. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Acta Mater. 57, 941 (2009).

    Article  Google Scholar 

  34. C.M. Bishop, W.C. Carter, Comput. Mater. Sci. 25, 378 (2002).

    Article  Google Scholar 

  35. A. Subramaniam, C.T. Koch, R.M. Cannon, M. Rühle, Mater. Sci. Eng. A 422, 3 (2006).

    Article  Google Scholar 

  36. M. Radke De Cuba, H. Emmerich, S. Gemming, Eur. Phys. J. ST 149, 43 (2007).

    Article  Google Scholar 

  37. M. Radke de Cuba, J. Kundin, H. Emmerich, S. Gemming, Physica D 238, 117 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. B. Oregan, M. Grätzel, Nature 353, 737 (1991).

    Article  ADS  Google Scholar 

  39. M. Riede, C. Uhrich, R. Timmreck, J. Widmer, D. Wynands, M. Levichkova, M. Furno, G. Schwartz, W. Gnehr, M. Pfeiffer, K. Leo, Optimization of organic tandem solar cells based on small molecules, in 35th IEEE Photovoltaic Specialists Conference, IEEE Photovoltaic Specialists (IEEE, NY, 2010) Number 978-1-4244-5891-2

  40. G. Heimel, I. Salzmann, S. Duhm, N. Koch, Chem. Mater. 23, 359 (2011).

    Article  Google Scholar 

  41. S. Scheinert, G. Paasch, I. Horselmann, A. Herasimovich, Org. Electr. 223, 155 (2010).

    Article  ADS  Google Scholar 

  42. K. Müller, Y. Burkov, D. Schmeisser, Thin Solid Films 495, 219 (2006).

    Article  ADS  Google Scholar 

  43. K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  44. M. Koentopp, C. Chang, K. Burke, R. Car, J. Phys.: Condens. Matter 20, 083203 (2008).

    Article  ADS  Google Scholar 

  45. L.A. Zotti, T. Kirchner, J.-C. Cuevas, F. Pauly, T. Huhn, E. Scheer, A. Erbe, Small 6, 1529 (2010).

    Article  Google Scholar 

  46. S.-P. Liu, S. Weisbrod, Z. Tang, A. Marx, E. Scheer, A. Erbe, Angew. Chem. Int. Ed. 49, 3313 (2010).

    Article  Google Scholar 

  47. L. Luo, S. Choi, C. Frisbie, Chem. Mater. 23, 631 (2011).

    Article  Google Scholar 

  48. K. Haubner, E. Jähne, H.-J.P. Adler, D. Köhler, C. Loppacher, L.M. Eng, J. Grenzer, A. Herasimovic, S. Scheinert, Phys. Stat. Sol. A 205, 430 (2008).

    Article  ADS  Google Scholar 

  49. A. Operamolla, G. Farinola, Eur. J. Org. Chem. 3, 423 (2011).

    Article  Google Scholar 

  50. S. Gemming, R. Luschtinetz, I. Chaplygin, G. Seifert, C. Loppacher, Lukas M. Eng, T. Kunze, C. Olbrich, Eur. Phys. J. ST 149, 145 (2007).

    Article  Google Scholar 

  51. T. Kunze, S. Gemming, R. Luschtinetz, V. Pankoke, K. Morawetz, G. Seifert, Phys. Rev. B 81, 115401 (2010).

    Article  ADS  Google Scholar 

  52. A. Ulman, Chem. Rev. 96, 1533 (1996).

    Article  Google Scholar 

  53. R. Helmy, A.Y. Fadeev, Langmuir 18, 8924 (2002).

    Article  Google Scholar 

  54. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993).

    Article  Google Scholar 

  55. J. Schnadt, P.A. Bruhwiler, L. Patthey, J.N. O’Shea, S. Sodergren, M. Odelius, R. Ahuja, O. Karis, M. Bassler, P. Persson, H. Siegbahn, S. Lunell, N. Martensson, Nature 418, 620 (2002).

    Article  ADS  Google Scholar 

  56. E. Jähne, D. Ferse, G. Busch, H.-J.P. Adler, A. Singh, I. Varma, Des. Mon. Polymers 5, 427 (2002).

    Article  Google Scholar 

  57. B. Adolphi, E. Jähne, G. Busch, X. Cai, Anal. Bioanal. Chem. 379, 646 (2004).

    Article  Google Scholar 

  58. R. Luschtinetz, J. Frenzel, T. Milek, G. Seifert, J. Phys. Chem. C 113, 5730 (2009).

    Article  Google Scholar 

  59. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995).

    Article  ADS  Google Scholar 

  60. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 58, 7260 (1998).

    Article  ADS  Google Scholar 

  61. G. Seifert, J. Phys. Chem. A 111, 5609 (2007).

    Article  Google Scholar 

  62. A.F. Oliveira, G. Seifert, T. Heine, H.A. Duarte, J. Braz. Chem. Soc. 20, 1193 (2009).

    Article  Google Scholar 

  63. B. Aradi, B. Hourahine, Ch. Köhler, Th. Frauenheim, J. Phys. Chem. A 111, 5678 (2007).

    Article  Google Scholar 

  64. R. Luschtinetz, G. Seifert, E. Jähne, H.-J.P. Adler, Macromol. Symp. 254, 248 (2007).

    Google Scholar 

  65. R. Luschtinetz, A.F. Oliveira, J. Frenzel, J.O. Joswig, G. Seifert, H.A. Duarte, Surf. Sci. 602, 1347 (2008).

    Article  ADS  Google Scholar 

  66. R. Luschtinetz, A.F. Oliveira, H.A. Duarte, G. Seifert, Z. Anorg. Allg. Chemie 636, 1506 (2010).

    Article  Google Scholar 

  67. S. Gemming, A.N. Enyashin, J. Frenzel, G. Seifert, Int. J. Mater. Res. 101, 758 (2010).

    Article  Google Scholar 

  68. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).

    Article  ADS  Google Scholar 

  69. S.P. Bates, G. Kresse, M.J. Gillan, Surf. Sci. 409, 336 (1998).

    Article  ADS  Google Scholar 

  70. C.L. Pang, R. Lindsay, G. Thornton, Chem. Soc. Rev. 37, 2328 (2008).

    Article  Google Scholar 

  71. S.P. Bates, M.J. Gillan, G. Kresse, J. Phys. Chem. B 102, 2017 (1998).

    Article  Google Scholar 

  72. S. Köppen, W. Langel, Phys. Chem. Chem. Phys. 10, 1907 (2008).

    Article  Google Scholar 

  73. U. Diebold, Surf. Sci. Rep. 48, 53 (2003).

    Article  ADS  Google Scholar 

  74. A. Vittadini, A. Selloni, F.P. Rotzinger, M. Grätzel, Phys. Rev. Lett. 81, 2954 (1998).

    Article  ADS  Google Scholar 

  75. S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara, M. Salmeron, A. Nilsson, J. Phys.: Condens. Matter 20, 184025 (2008).

    Article  ADS  Google Scholar 

  76. A. Vittadini, M. Casarin, A. Selloni, Theor. Chem. Acc. 117, 663 (2007).

    Article  Google Scholar 

  77. M.A. Henderson, Surf. Sci. Rep. 46, 1 (2002).

    Article  ADS  Google Scholar 

  78. M.A. Barteau, Chem. Rev 96, 1413 (1996).

    Article  Google Scholar 

  79. L. Ojamäe, C. Aulin, H. Pedersen, P.-O. Käll, J. Colloid Interf. Sci. 296, 71 (2006).

    Article  Google Scholar 

  80. J. Randon, P. Blanc, R. Paterson, J. Membr. Sci. 98, 119 (1995).

    Article  Google Scholar 

  81. S. Marcinko, A.Y. Fadeev, Langmuir 20, 2270 (2004).

    Article  Google Scholar 

  82. G. Guerrero, P.H. Mutin, A. Vioux, Chem. Mater. 13, 4367 (2001).

    Article  Google Scholar 

  83. P.H. Mutin, V. Lafond, A.F. Popa, M. Granier, L. Markey, A. Dereux, Chem. Mater. 16, 5670 (2004).

    Article  Google Scholar 

  84. A. Vittadini, A. Selloni, F.P. Rotzinger, M. Grätzel, J. Phys. Chem. B 104, 1300 (2000).

    Article  Google Scholar 

  85. H. Onishi, T. Aruga, Y.J. Iwasawa, J. Am. Chem. Soc. 115, 10460 (1993).

    Article  Google Scholar 

  86. K. Fukui, H. Onishi, Y.J. Iwasawa, Chem. Phys. Lett. 280, 296 (1997).

    Article  ADS  Google Scholar 

  87. S.A. Chambers, S. Tevuthasan, Y.J. Kim, G.S. Herman, Z. Wang, E. Tober, R. Ynzunza, J. Morais, C.H.F. Peden, K. Ferris, C.S. Fadley, Chem. Phys. Lett. 267, 51 (1997).

    Article  ADS  Google Scholar 

  88. D.I. Sayago, M. Polcik, R. Lindsay, R.L. Toomes, J.T. Hoeft, M. Kittel, D.P. Woodruff, J. Phys. Chem. B 108, 14316 (2004).

    Article  Google Scholar 

  89. F.P. Rotzinger, J.M. Kesselman-Truttmann, S.J. Hug, V. Shklover, M. Grätzel, J. Phys. Chem. B 108, 5004 (2004).

    Article  Google Scholar 

  90. Y. Uemura, T. Taniike, M. Tada, Y. Morikawa, Y. Iwasawa, J. Phys. Chem. C 111, 16379 (2007).

    Article  Google Scholar 

  91. J. Ahdjoudj, C. Minot, Catal. Lett. 46, 83 (1997).

    Article  Google Scholar 

  92. P. Käckell, K. Terakura, Surf. Sci. 461, 191 (2000).

    Article  Google Scholar 

  93. M. Nilsing, P. Persson, S. Lunell, L. Ojamäe, J. Phys. Chem. C 111, 12116 (2007).

    Article  Google Scholar 

  94. M. Nilsing, S. Lunell, P. Persson, L. Ojamäe, Surf. Sci. 582, 49 (2005).

    Article  ADS  Google Scholar 

  95. P. Raghunath, M.C. Lin, J. Phys. Chem. C 112, 8276 (2008).

    Article  Google Scholar 

  96. D. Szieberth, A.M. Ferrari, X. Dong, Phys. Chem. Chem. Phys. 12, 11033 (2010).

    Article  Google Scholar 

  97. K.S. Kim, M.A. Barteau, Langmuir 4, 945 (1988).

    Article  Google Scholar 

  98. K.L. Miller, C.W. Lee, J.L. Falconer, J.W. Medlin, J. Catal. 275, 294 (2010).

    Article  Google Scholar 

  99. G.Y. Popova, T.V. Andrushkevich, Y.A. Chesalov, E.S. Stoyanov, Kinet. Catal. 41, 805 (2000).

    Article  Google Scholar 

  100. N.W. Duffy, K.D. Dobson, K.C. Gordon, B.H. Robinson, A.J. McQuillan, Chem. Phys. Lett. 266, 451 (1997).

    Article  ADS  Google Scholar 

  101. K.S. Finnie, J.R. Bartlett, J.L. Woolfrey, Langmuir 14, 2744 (1998).

    Article  Google Scholar 

  102. C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J. Phys. Chem. B 106, 12693 (2002).

    Article  Google Scholar 

  103. W.K. Li, X.-Q. Gong, G. Lu, A. Selloni, J. Phys. Chem. C 112, 6594 (2008).

    Article  Google Scholar 

  104. X.-Q. Gong, A. Selloni, J. Catal. 249, 134 (2007).

    Article  Google Scholar 

  105. P. Raghunath, M.C. Lin, J. Phys. Chem. C 113, 8394 (2009).

    Article  Google Scholar 

  106. W. Gao, L. Dickinson, C. Grozinger, F.G. Morin, L. Reven, Langmuir 12, 6429 (1996).

    Article  Google Scholar 

  107. S. Pawsey, M. McCormick, S De Paul, R. Graf, Y.S. Lee, L. Reven, H.W. Spiess, J. Am. Chem. Soc. 125, 4174 (2003).

    Article  Google Scholar 

  108. E.S. Gawalt, M.J. Avaltroni, N. Koch, J. Schwartz, Langmuir 17, 5736 (2001).

    Article  Google Scholar 

  109. S. Pawsey, K. Yach, L. Reven, Langmuir 18, 5205 (2002).

    Article  Google Scholar 

  110. P. Pèchy, F.P. Rotzinger, M.K. Nazeeruddin, O. Kohle, S.M. Zakeeruddin, R. Humphry-Baker, M. Grätzel, J. Chem. Soc. Chem. Commun., page 65 (1995).

  111. I. Gillaizeau-Gauthier, F. Odobel, M. Alebbi, R. Aragazzi, E. Costa, C.A. Bignozzi, P. Qu, G.J. Meyer, Inorg. Chem. 40, 6073 (2001).

    Article  Google Scholar 

  112. M. Nilsing, P. Persson, L. Ojamäe, Chem. Phys. Lett. 415, 375 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Luschtinetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luschtinetz, R., Gemming, S. & Seifert, G. Anchoring functional molecules on TiO2 surfaces: A comparison between the carboxylic and the phosphonic acid group. Eur. Phys. J. Plus 126, 98 (2011). https://doi.org/10.1140/epjp/i2011-11098-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11098-4

Keywords

Navigation