Skip to main content
Log in

On phase-field modeling with a highly anisotropic interfacial energy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report on phase-field approaches that allow for anisotropies sufficiently high so that the interface develops sharp corners due to missing crystallographic orientations. This implies the necessity of a regularization that enforces local equilibrium at the corners, and we use the method of Eggelston et al. (Physica D 150, 91 (2001)), generalized to arbitrary crystal symmetries and rotations of the crystalline axes. Two different anisotropic phase-field formulations are presented and discussed: The classical model that allows the interface to vary with orientation, and another more recent formulation that has a constant interface width. We develop an explicit finite-difference scheme that combines a two-step differentiation with a stagnation grid formulation. The presented numerical implementation is stable and accurate enough to account for odd crystal symmetries and high angle rotations of the initial crystalline orientation. Even in the case of highly anisotropic interfacial energies, both formulations show excellent agreement with the well-known Wulff construction of the equilibrium shape of a particle embedded in a matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. London A 243, 299 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. I. Loginova, J. Agren, G. Amberg, Acta Mater. 52, 4055 (2004).

    Article  Google Scholar 

  3. N. Moelans, B. Blanpain, P. Wollants, Phys. Rev. Lett. 101, 025502 (2008).

    Article  ADS  Google Scholar 

  4. A.G. Khachaturyan, Theory of Structural Transformation in Solids, 2nd edition (Dover Publications, Inc., Mineola, NY, 2008) 11501

  5. J.-M. Debierre, A. Karma, F. Celestini, R. Gurin, Phys. Rev. E 68, 041604 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Karma, W.-J. Rappel, Phys. Rev. E 57, 4323 (1998).

    Article  ADS  MATH  Google Scholar 

  7. A. Karma, Phys. Rev. Lett. 87, 115701 (2001).

    Article  ADS  Google Scholar 

  8. G. Caginalp, P.C. Fife, Phys. Rev. B 34, 4940 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  9. G.B. McFadden, A.A. Wheeler, R.J. Braun, S.R. Coriell, R.F. Sekerka, Phys. Rev. E 48, 2016 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  10. J.A. Warren, W.J. Boettinger, Acta Metall. Mater. 43, 689 (1995).

    Article  Google Scholar 

  11. H. Garcke, B. Nestler, B. Stoth, Physica D 115, 87 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. R. Kobayashi, J.A. Warren, W.C. Carter, Physica D 119, 415 (1998).

    Article  ADS  Google Scholar 

  13. S. Torabi, J. Lowengrub, A. Voigt, S. Wise, Proc. R. Soc. A 456, 1337 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  14. N. Ma, Q. Chen, Y. Wang, Scr. Mater. 54, 1919 (2006).

    Article  Google Scholar 

  15. J.E. Taylor, J.W. Cahn, Physica D 112, 381 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J.J. Eggleston, G.B. McFadden, P.W. Voorhees, Physica D 150, 91 (2001).

    Article  ADS  MATH  Google Scholar 

  17. A.A. Wheeler, Proc. R. Soc. A 462, 3363 (2006).

    Article  ADS  MATH  Google Scholar 

  18. S. Wise, J. Kim, J. Lowengrub, J. Comp. Phys. 226, 414 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. F. Hauer, A. Voigt, J. Sci. Comput. 30, 223 (2007).

    Article  MathSciNet  Google Scholar 

  20. B.J. Spencer, Phys. Rev. E 69, 011603 (2004).

    Article  ADS  Google Scholar 

  21. B. Nestler, F. Wendler, M. Selzer, B. Stinner, H. Garcke, Phys. Rev. E 78, 011604 (2008).

    Article  ADS  Google Scholar 

  22. A.L. Garcia, Numerical Methods for Physics, 2nd edition (Prentice Hall, Englewood Cliffs, NJ, 2000).

  23. R. Spatschek, C. Müller-Gugenberger, E. Brener, B. Nestler, Phys. Rev. E 75, 066111 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  24. D. Pilipenko, M. Fleck, H. Emmerich, On numerical aspects of phase field fracture modeling, to be published in Eur. Phys. J. Plus, 126 (2011).

  25. I.N. Bronstein, K.A. Semendjaev, G. Musiol, H. Mühlig, Taschenbuch der Mathematik (Verlag Harri Deutsch, 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fleck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleck, M., Mushongera, L., Pilipenko, D. et al. On phase-field modeling with a highly anisotropic interfacial energy. Eur. Phys. J. Plus 126, 95 (2011). https://doi.org/10.1140/epjp/i2011-11095-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11095-7

Keywords

Navigation