Skip to main content
Log in

Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and \( \alpha\)-hemolysin nanopores

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Seeking new tools for the analysis of glycosaminoglycans, we have compared the translocation of anionic oligosaccharides from hyaluronic acid using aerolysin and \(\alpha\)-hemolysin nanopores. We show that pores of similar channel length and diameter lead to distinct translocation behavior of the same macromolecules, due to different structural properties of the nanopores. When passing from the vestibule side of the nanopores, short hyaluronic acid oligosaccharides could be detected during their translocation across an aerolysin nanopore but not across an \(\alpha\)-hemolysin nanopore. We were however able to detect longer oligosaccharide fragments, resulting from the in situ enzymatic depolymerization of hyaluronic acid polysaccharides, with both nanopores, meaning that short oligosaccharides were crossing the \(\alpha\)-hemolysin nanopore with a speed too high to be detected. The translocation speed was an order of magnitude higher across \(\alpha\)-hemolysin compared to aerolysin. These results show that the choice of a nanopore to be used for resistive pulse sensing experiments should not rely only on the diameter of the channel but also on other parameters such as the charge repartition within the pore lumen.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wang et al., ACS Sens. 3, 251 (2018)

    Article  Google Scholar 

  2. C. Cao et al., Nat. Protoc. 12, 1901 (2017)

    Article  Google Scholar 

  3. S. Huang et al., Nat. Nanotechnol. 10, 986 (2015)

    Article  ADS  Google Scholar 

  4. A. Biesemans, M. Soskine, G. Maglia, Nano Lett. 15, 6076 (2015)

    Article  ADS  Google Scholar 

  5. E.C. Yusko et al., Nat. Nanotechnol. 12, 360 (2016)

    Article  ADS  Google Scholar 

  6. W. Si, A. Aksimentiev, ACS Nano 11, 7091 (2017)

    Article  Google Scholar 

  7. F. Piguet et al., Nat. Commun. 9, 966 (2018)

    Article  ADS  Google Scholar 

  8. A.E. Chavis et al., ACS Sens. 2, 1319 (2017)

    Article  Google Scholar 

  9. G. Huang et al., Nat. Commun. 8, 935 (2017)

    Article  ADS  Google Scholar 

  10. A. Fennouri et al., ACS Nano 6, 9672 (2012)

    Article  Google Scholar 

  11. F. Rivas et al., Nat. Commun. 9, 1037 (2018)

    Article  ADS  Google Scholar 

  12. J.R. Bishop, M. Schuksz, J.D. Esko, Nature 446, 1030 (2007)

    Article  ADS  Google Scholar 

  13. A. Nikos et al., FEBS J. 279, 1177 (2012)

    Article  Google Scholar 

  14. L. Jin et al., Proc. Natl. Acad. Sci. U.S.A. 94, 14683 (1997)

    Article  ADS  Google Scholar 

  15. S.T. Olson et al., J. Biol. Chem. 267, 12528 (1992)

    Google Scholar 

  16. L. Ng et al., J. Struct. Biol. 143, 242 (2003)

    Article  Google Scholar 

  17. S. Rigozzi et al., J. Biomech. 46, 813 (2013)

    Article  Google Scholar 

  18. L. Bacri et al., Biochem. Biophys. Res. Commun. 412, 561 (2011)

    Article  Google Scholar 

  19. A.J. Day, G.D. Prestwich, J. Biol. Chem. 277, 4585 (2002)

    Article  Google Scholar 

  20. A. Fennouri et al., Anal. Chem. 85, 8488 (2013)

    Article  Google Scholar 

  21. R. Stefureac et al., Biochemistry 45, 9172 (2006)

    Article  Google Scholar 

  22. C. Merstorf et al., ACS Chem. Biol. 7, 652 (2012)

    Article  Google Scholar 

  23. P. Mueller et al., J. Phys. Chem. 67, 534 (1963)

    Article  Google Scholar 

  24. M. Pastoriza-Gallego et al., J. Am. Chem. Soc. 133, 2923 (2011)

    Article  Google Scholar 

  25. S.P. Howard, J.T. Buckley, Mol. Gen. Genet. MGG 204, 289 (1986)

    Article  Google Scholar 

  26. M. Moniatte et al., FEBS Lett. 384, 269 (1996)

    Article  Google Scholar 

  27. V. Cabiaux et al., Biochemistry 36, 15224 (1997)

    Article  Google Scholar 

  28. L. Payet et al., Biophys. J. 109, 1600 (2015)

    Article  ADS  Google Scholar 

  29. G. Baaken et al., ACS Nano 9, 6443 (2015)

    Article  Google Scholar 

  30. O.V. Krasilnikov, C.G. Rodrigues, S.M. Bezrukov, Phys. Rev. Lett. 97, 018301 (2006)

    Article  ADS  Google Scholar 

  31. A. Meller et al., Proc. Natl. Acad. Sci. U.S.A. 97, 1079 (2000)

    Article  ADS  Google Scholar 

  32. H. Meng et al., J. Pept. Sci. 16, 701 (2010)

    Article  Google Scholar 

  33. C. Christensen et al., J. Pept. Sci. 17, 726 (2011)

    Article  Google Scholar 

  34. D. Pedone, M. Firnkes, U. Rant, Anal. Chem. 81, 9689 (2009)

    Article  Google Scholar 

  35. A. Oukhaled et al., ACS Chem. Biol. 7, 1935 (2012)

    Article  Google Scholar 

  36. C.T.A. Wong, M. Muthukumar, J. Chem. Phys. 133, 045101 (2010)

    Article  ADS  Google Scholar 

  37. M. Soskine et al., Nano Lett. 12, 4895 (2012)

    Article  ADS  Google Scholar 

  38. L. Song et al., Science 274, 1859 (1996)

    Article  ADS  Google Scholar 

  39. S.Y. Noskov, W. Im, B. Roux, Biophys. J. 87, 2299 (2004)

    Article  ADS  Google Scholar 

  40. M. Misakian, J.J. Kasianowicz, J. Membr. Biol. 195, 137 (2003)

    Article  Google Scholar 

  41. S. Bhattacharya et al., J. Phys. Chem. C 115, 4255 (2011)

    Article  Google Scholar 

  42. M. Boukhet et al., Nanoscale 8, 18352 (2016)

    Article  Google Scholar 

  43. J. Muzard et al., Biophys. J. 98, 2170 (2010)

    Article  ADS  Google Scholar 

  44. K.P. Vercruysse, A.R. Lauwers, J.M. Demeester, Biochem. J. 310, 55 (1995)

    Article  Google Scholar 

  45. J.J. Kasianowicz et al., Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régis Daniel.

Additional information

This work and report are dedicated to late Loïc Auvray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fennouri, A., Ramiandrisoa, J., Bacri, L. et al. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and \( \alpha\)-hemolysin nanopores. Eur. Phys. J. E 41, 127 (2018). https://doi.org/10.1140/epje/i2018-11733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11733-5

Keywords

Navigation