Skip to main content

Advertisement

Log in

On the effects of surface corrugation on the hydrodynamic performance of cylindrical rigid structures

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this work, we perform fully three-dimensional numerical simulations of the flow field surrounding cylindrical structures characterized by different types of corrugated surface. The simulations are carried out using the Lattice Boltzmann Method (LBM), considering a flow regime with a Reynolds number \({\rm Re}\sim 130\). The fluid-dynamic wake structure and stability are investigated by means of PSD analyses of the velocity components and by visual inspection of the vortical coherent structure evolution. Moreover, the energy dissipation of the flow is assessed by considering an equivalent discharge coefficient \(C_{d}^{\ast}\), which measures the total pressure losses of the flow moving around the various layout under investigation. Outcomes from our study demonstrate that the helical ridges augment energy dissipation, but might also have a role in the passive control of the characteristic frequencies of the unsteady wake flow.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Elliott, Trans. IRE Prof. Group Antennas Propag. 2, 71 (1954)

    Article  Google Scholar 

  2. Robert N. Wenzel, J. Phys. Chem. 53, 1466 (1949)

    Article  Google Scholar 

  3. G. Falcucci, A. Montessori, P. Prestininzi, S. Succi, C. Barroo, D.C. Bell, M.M. Biener, J. Biener, B. Zugic, E. Kaxiras, Microfluidics Nanofluids 20, 105 (2016)

    Article  Google Scholar 

  4. V.V. Vasiliev, V.A. Barynin, A.F. Rasin, Compos. Struct. 54, 361 (2001) (Third International Conference on Composite Science and Technology

    Article  Google Scholar 

  5. A. Gurley, D. Beale, R. Broughton, D. Branscomb, ASME J. Mech. Des. 137, 101401 (2015)

    Article  Google Scholar 

  6. Marc André Meyers, Joanna McKittrick, Po-Yu Chen, Science 339, 773 (2013)

    Article  ADS  Google Scholar 

  7. D. Barkley, Europhys. Lett. 75, 750 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Giannetti, P. Luchini, J. Fluid Mech. 581, 167 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Luchini, F. Giannetti, J. Pralits, Structural sensitivity of the finite-amplitude vortex shedding behind a circular cylinder, in IUTAM Symposium on Unsteady Separated Flows and their Control, edited by Marianna Braza, Kerry Hourigan (Springer, Dordrecht, The Netherlands, 2009) pp. 151--160

    Chapter  Google Scholar 

  10. C.H.K. Williamson, Phys. Fluids 31, 3165 (1988)

    Article  ADS  Google Scholar 

  11. Charles H.K. Williamson, Phys. Fluids 31, 2742 (1988)

    Article  ADS  Google Scholar 

  12. Xiaowen Shan, Hudong Chen, Phys. Rev. E 47, 1815 (1993)

    Article  ADS  Google Scholar 

  13. Michael R. Swift, W.R. Osborn, J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995)

    Article  ADS  Google Scholar 

  14. S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30, 329 (1998)

    Article  ADS  Google Scholar 

  15. S. Succi, The Lattice Boltzmann Equation: For Complex States of Flowing Matter (Oxford University Press, 2018)

  16. R. Benzi, S. Succi, M. Vergassola, Phys. Rep. 222, 145 (1992)

    Article  ADS  Google Scholar 

  17. G. Falcucci, G. Bella, G. Chiatti, S. Chibbaro, M. Sbragaglia, S. Succi, Commun. Comput. Phys. 2, 1071 (2007)

    Google Scholar 

  18. G. Falcucci, E. Jannelli, S. Ubertini, S. Succi, J. Fluid Mech. 728, 362 (2013)

    Article  ADS  Google Scholar 

  19. Andrea Montessori, Giacomo Falcucci, Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Morgan & Claypool Publishers, 2018) pp. 2053--2571

  20. Vesselin Krassimirov Krastev, Giorgio Amati, Elio Jannelli, Giacomo Falcucci, Direct numerical simulation of SCR reactors through kinetic approach, SAE Tech. Paper 2016-01-0963 (2016)

  21. Giacomo Falcucci, Stefano Ubertini, Gino Bella, Alessandro De Maio, Silvia Palpacelli, SAE Int. J. Fuels Lubr. 3, 582 (2010)

    Article  Google Scholar 

  22. Zhaoli Guo, T.S. Zhao, Phys. Rev. E 66, 036304 (2002)

    Article  ADS  Google Scholar 

  23. Giacomo Falcucci, Giorgio Amati, Vesselin K. Krastev, Andrea Montessori, Grigoriy S. Yablonsky, Sauro Succi, Chem. Eng. Sci. 166, 274 (2017)

    Article  Google Scholar 

  24. Vesselin Krassimirov Krastev, Giacomo Falcucci, Energies 11, 715 (2018)

    Article  Google Scholar 

  25. Annunziata D’Orazio, Sauro Succi, Boundary conditions for thermal lattice Boltzmann simulations, in Computational Science ---ICCS 2003, edited by P.M.A. Sloot, Lect. Notes Comput. Sci., Vol. 2657 (Springer, Berlin, Heidelberg, 2003) pp. 977--986

  26. Roberto Benzi, Mauro Sbragaglia, Sauro Succi, Massimo Bernaschi, Sergio Chibbaro, J. Chem. Phys. 131, 104903 (2009)

    Article  ADS  Google Scholar 

  27. Prasad Perlekar, Luca Biferale, Mauro Sbragaglia, Sudhir Srivastava, Federico Toschi, Phys. Fluids 24, 065101 (2012)

    Article  ADS  Google Scholar 

  28. F. Diotallevi, L. Biferale, S. Chibbaro, A. Lamura, G. Pontrelli, M. Sbragaglia, S. Succi, F. Toschi, Eur. Phys. J. ST. 166, 111 (2009)

    Article  Google Scholar 

  29. Badr Kaoui, Phys. Rev. E 95, 063310 (2017)

    Article  ADS  Google Scholar 

  30. José Miguel Pérez, Alfonso Aguilar, Vassilis Theofilis, Theor. Comput. Fluid Dyn. 31, 643 (2017)

    Article  Google Scholar 

  31. Y.H. Qian, D. D’Humières, P. Lallemand, Europhys. Lett. 17, 479 (1992)

    Article  ADS  Google Scholar 

  32. John H. Lienhard, Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders, Vol. 300 (Technical Extension Service, Washington State University, 1966)

  33. C.H.K. Williamson, J. Fluid Mech. 206, 579 (1989)

    Article  ADS  Google Scholar 

  34. G. Falcucci, E. Jannelli, S. Ubertini, S. Succi, J. Fluid Mech. 728, 362 (2013)

    Article  ADS  Google Scholar 

  35. OpenFOAM Development Line, https://doi.org/cfd.direct/openfoam/download/

  36. Luca Biferale, Annu. Rev. Fluid Mech. 35, 441 (2003)

    Article  Google Scholar 

  37. R. Benzi, L. Biferale, F. Toschi, Phys. Rev. Lett. 80, 3244 (1998)

    Article  ADS  Google Scholar 

  38. R. Benzi, L. Biferale, S. Ciliberto, M.V. Struglia, R. Tripiccione, Europhys. Lett. 32, 709 (1995)

    Article  ADS  Google Scholar 

  39. Vesselin Krassimirov Krastev, Gino Bella, Gennaro Campitelli, Some developments in DES modeling for engine flow simulation, Technical report, SAE Tech. Paper 2015-24-2414 (2015)

  40. J.C.R. Hunt, A.A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows, Report No. ctr-s88 (Center for Turbulence Research, Stanford University, USA, 1988)

  41. Václav Kolář, Int. J. Heat Fluid Flow 28, 638 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Falcucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krastev, V.K., Amati, G., Succi, S. et al. On the effects of surface corrugation on the hydrodynamic performance of cylindrical rigid structures. Eur. Phys. J. E 41, 95 (2018). https://doi.org/10.1140/epje/i2018-11703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11703-y

Keywords

Navigation