Skip to main content
Log in

Water jet indentation for local elasticity measurements of soft materials

  • Tips and Tricks
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a novel elastography method for soft materials (100Pa-100kPa) based on indentation by a μm-sized water jet. We show that the jet creates a localized deformation (“cavity”) of the material that can be easily visualized. We study experimentally how cavity width and depth depend on jet speed, height, incidence angle and sample elasticity. We describe how to calibrate the indenter using gels of known stiffness. We then demonstrate that the indenter yields quantitative elasticity values within 10% of those measured by shear rheometry. We corroborate our experimental findings with fluid-solid finite-element simulations that quantitatively predict the cavity profile and fluid flow lines. The water jet indenter permits in situ local stiffness measurements of 2D or 3D gels used for cell culture in physiological buffer, is able to assess stiffness heterogeneities with a lateral resolution in the range 50-500μm (at the tissue scale) and can be assembled at low cost with standard material from a biology laboratory. We therefore believe it will become a valuable method to measure the stiffness of a wide range of soft, synthetic or biological materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006)

    Article  Google Scholar 

  2. J.R. Tse, A.J. Engler, PLoS One 6, e15978 (2011)

    Article  ADS  Google Scholar 

  3. C.-M. Lo, H.-B. Wang, M. Dembo, Y. Wang, Biophys. J. 79, 144 (2000)

    Article  Google Scholar 

  4. L.G. Vincent, Y.S. Choi, B. Alonso-Latorre, J.C. del Alamo, A.J. Engler, Biotechnol. J. 8, 472 (2013)

    Article  Google Scholar 

  5. V. Fleury, N.R. Chevalier, F. Furfaro, J.-L. Duband, Eur. Phys. J. E 38, 6 (2015)

    Article  Google Scholar 

  6. S. Majkut, T. Idema, J. Swift, C. Krieger, A. Liu, D.E. Discher, Curr. Biol. 23, 2434 (2013)

    Article  Google Scholar 

  7. A. Peaucelle, S.A. Braybrook, L. Le Guillou, E. Bron, C. Kuhlemeier, H. Hofte, Curr. Biol. 21, 1720 (2011)

    Article  Google Scholar 

  8. I. Levental, K.R. Levental, E.A. Klein, R. Assoian, R.T. Miller, R.G. Wells, P.A. Janmey, J. Phys.: Condens. Matter 22, 194120 (2010)

    ADS  Google Scholar 

  9. L. Davidson, R. Keller, Methods Cell Biol. 83, 425 (2007)

    Article  Google Scholar 

  10. K. Guevorkian, M.-J. Colbert, M. Durth, S. Dufour, F. Brochard-Wyart, Phys. Rev. Lett. 104, 218101 (2010)

    Article  ADS  Google Scholar 

  11. E.A. Corbin, L.J. Millet, J.H. Pikul, C.L. Johnson, J.G. Georgiadis, W.P. King, R. Bashir, Biomed. Microdev. 15, 311 (2013)

    Article  Google Scholar 

  12. S. Li, K.D. Mohan, W.W. Sanders, A.L. Oldenburg, J. Biomed. Opt. 16, 116005 (2011)

    Article  ADS  Google Scholar 

  13. Y.P. Zheng, M.H. Lu, Q. Wang, Ultrasonics 44, 203 (2006)

    Article  Google Scholar 

  14. M. Lu, Y. Zheng, Q. Huang, Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 993 (2005)

    Google Scholar 

  15. Y. Wang, Y.P. Huang, A. Liu, W. Wan, Y.P. Zheng, Ultrasound Med. Biol. 40, 1296 (2014)

    Article  Google Scholar 

  16. J.L. Gennisson, T. Deffieux, M. Fink, M. Tanter, Diag. Interv. Im. 94, 487 (2013)

    Article  Google Scholar 

  17. D. Sánchez, N. Johnson, C. Li, P. Novak, J. Rheinlaender, Y. Zhang, U. Anand, P. Anand, J. Gorelik, G.I. Frolenkov, C. Benham, M. Lab, V.P. Ostanin, T.E. Schäffer, D. Klenerman, Y.E. Korchev, Biophys. J. 95, 3017 (2008)

    Article  Google Scholar 

  18. V. Fleury, A. Al-Kilani, O.P. Boryskina, A.J.M. Cornelissen, T.H. Nguyen, M. Unbekandt, L. Leroy, G. Baffet, F. Le Noble, O. Sire, E. Lahaye, V. Burgaud, Phys. Rev. E 81, 1 (2010)

    Article  Google Scholar 

  19. W.L. Ottar, Insight 23, 11 (1998)

    Google Scholar 

  20. G. Boyer, C. Pailler Mattei, J. Molimard, M. Pericoi, S. Laquieze, H. Zahouani, Med. Eng. Phys. 34, 172 (2012)

    Article  Google Scholar 

  21. D.C. Lin, D.I. Shreiber, E.K. Dimitriadis, F. Horkay, Biomech. Model. Mechanobiol. 8, 345 (2009)

    Article  Google Scholar 

  22. K.L. Johnson, Contact Mechanics (Cambridge University Press, 1985)

  23. P. Zimoch, E. Tixier, J. Hsu, A. Winter, A. Hosoi, Fast, large amplitude vibrations of compliant cylindrical shells carrying a fluid, ArXiv e-prints, October 2012

  24. T. Boudou, J. Ohayon, C. Picart, R.I. Pettigrew, P. Tracqui, Biorheology 46, 191 (2009)

    Google Scholar 

  25. T. Uth, V.S. Deshpande, Proc. Natl. Acad. Sci. U.S.A. 110, 20028 (2013)

    Article  ADS  Google Scholar 

  26. E. Guyon, J-P. Hulin, Hydrodynamique Physique (EDP Science, 2001)

  27. J. Guyette, S.E. Gilpin, J.M. Charest, L.F. Tapias, X. Ren, H.C. Ott, Perfus. Decellulariz. Whole Organs 9, 1451 (2014)

    Google Scholar 

  28. M.-T. Ke, S. Fujimoto, T. Imai, Nat. Neurosci. 16, 1154 (2013)

    Article  Google Scholar 

  29. R.N. Palchesko, L. Zhang, Y. Sun, A.W. Feinberg, PLoS One 7, e51499 (2012) DOI:10.1371/journal.pone.0051499

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Chevalier.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chevalier, N.R., Dantan, P., Gazquez, E. et al. Water jet indentation for local elasticity measurements of soft materials. Eur. Phys. J. E 39, 10 (2016). https://doi.org/10.1140/epje/i2016-16010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16010-1

Keywords

Navigation