Skip to main content
Log in

Bubble formation in water with addition of a hydrophobic solute

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Attard, M.P. Moody, J.W.G. Tyrrell, Physica A 314, 696 (2002).

    Article  ADS  Google Scholar 

  2. M.A. Hampton, A.V. Nguyen, Adv. Colloid Interface Sci. 154, 30 (2010).

    Article  Google Scholar 

  3. J.R.T. Seddon, D. Lohse, W.A. Ducker, V.S.J. Craig, Chem. Phys. Chem. 13, 2179 (2012).

    Google Scholar 

  4. R.M. Pashley, P.M. McGuiggan, B.W. Ninham, D.F. Evans, Science 229, 1088 (1985).

    Article  ADS  Google Scholar 

  5. H.K. Christenson, P.M. Claesson, Science 239, 390 (1988).

    Article  ADS  Google Scholar 

  6. A. Carambassis, L.C. Jonker, P. Attard, M.W. Rutland, Phys. Rev. Lett. 80, 5357 (1998).

    Article  ADS  Google Scholar 

  7. R.F. Considine, C.J. Drummond, Langmuir 16, 631 (2000).

    Article  Google Scholar 

  8. J.W.G. Tyrrell, P. Attard, Phys. Rev. Lett. 87, 176104 (2001).

    Article  ADS  Google Scholar 

  9. V. Yaminsky, S. Ohnishi, Langmuir 19, 1970 (2003).

    Article  Google Scholar 

  10. A.C. Simonsen, P.L. Hansen, B. Klösgen, J. Colloid Interface Sci. 273, 291 (2004).

    Article  Google Scholar 

  11. X.H. Zhang, A. Quinn, W.A. Ducker, Langmuir 24, 4756 (2008).

    Article  Google Scholar 

  12. M.A.J. van Limbeek, J.R.T. Seddon, Langmuir 27, 8694 (2011).

    Article  Google Scholar 

  13. F. Jin, J. Ye, L. Hong, H. Lam, C. Wu, J. Phys. Chem. B 111, 2255 (2007).

    Article  Google Scholar 

  14. N. Ishida, M. Sakamoto, M. Miyahara, K. Higashitani, Langmuir 16, 5681 (2000).

    Article  Google Scholar 

  15. K. Ohgaki, N.Q. Khanh, Y. Joden, A. Tsuji, T. Nakagawa, Chem. Eng. Sci. 65, 1296 (2010).

    Article  Google Scholar 

  16. F.Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T.Shiina, S. Oshita, Colloids Surf. A 361, 31 (2010).

    Article  Google Scholar 

  17. T. Uchida, S. Oshita, M. Ohmori, T. Tsuno, K. Soejima, S. Shinozaki, Y. Take, K. Mitsuda, Nanoscale Res. Lett. 6, 295 (2011).

    Article  ADS  Google Scholar 

  18. N.F. Bunkin, N.V. Suyazov, A.V. Shkirin, P.S. Ignatiev, K.V. Indukaev, J. Chem. Phys. 130, 134308 (2009).

    Article  ADS  Google Scholar 

  19. A. Ben-Naim, Y. Marcus, J. Chem. Phys. 81, 2016 (1984).

    Article  ADS  Google Scholar 

  20. B. Guillot, Y. Guissani, J. Chem. Phys. 99, 8075 (1993).

    Article  ADS  Google Scholar 

  21. H.S. Ashbaugh, M.E. Paulaitis, J. Am. Chem. Soc. 123, 10721 (2001).

    Article  Google Scholar 

  22. G. Hummer, S. Garde, A.E. García, L.R. Pratt, Chem. Phys. 258, 349 (2000).

    Article  ADS  Google Scholar 

  23. D. Chandler, Nature 437, 640 (2005).

    Article  ADS  Google Scholar 

  24. S. Rajamani, T.M. Truskett, S. Garde, Proc. Natl. Acad. Sci. U.S.A. 102, 9475 (2005).

    Article  ADS  Google Scholar 

  25. J.W. Cahn, J. Chem. Phys. 66, 3667 (1977).

    Article  ADS  Google Scholar 

  26. D. Bonn, D. Ross, Rep. Prog. Phys. 64, 1085 (2001).

    Article  ADS  Google Scholar 

  27. D.A. Doshi, E.B. Watkins, J.N. Israelachvili, J. Majewski, Proc. Natl. Acad. Sci. U.S.A. 102, 9458 (2005).

    Article  ADS  Google Scholar 

  28. A. Poynor, L. Hong, I.K. Robinson, S. Granick, Z. Zhang, P.A. Fenter, Phys. Rev. Lett. 97, 266101 (2006).

    Article  ADS  MATH  Google Scholar 

  29. M. Mezger, H. Reichert, S. Schöder, J. Okasinski, H. Schröder, H. Dosch, D. Palms, J. Ralston, V. Honkimäki, Proc. Natl. Acad. Sci. U.S.A. 103, 18401 (2006).

    Article  ADS  Google Scholar 

  30. A.F. Kostko, M.A. Anisimov, J.V. Sengers, Phys. Rev. E 70, 026118 (2004).

    Article  ADS  Google Scholar 

  31. A. Onuki, R. Okamoto, Curr. Opin. Colloid Interface 16, 525 (2011).

    Article  Google Scholar 

  32. R. Okamoto, A. Onuki, Phys. Rev. E 82, 051501 (2010).

    Article  ADS  Google Scholar 

  33. R. Sander, Atmos. Chem. Phys. Discuss. 14, 29615 (2014).

    Article  ADS  Google Scholar 

  34. F.L. Smith, A.H. Harvey, Chem. Engin. Progr. AIChE 103, 33 (2007).

    Google Scholar 

  35. M. Blander, J. Katz, AIChE J. 21, 833 (1975).

    Article  Google Scholar 

  36. M.E.M. Azouzi, C. Ramboz, J.-F. Lenain, F. Caupin, Nat. Phys. 9, 38 (2013).

    Article  Google Scholar 

  37. A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2002).

  38. D. Turnbull, J. Chem. Phys. 18, 198 (1950).

    Article  ADS  Google Scholar 

  39. D. Winter, P. Virnau, K. Binder, Phys. Rev. Lett. 103, 225703 (2009).

    Article  ADS  Google Scholar 

  40. A. Onuki, J. Phys.: Condens. Matter 9, 6119 (1997).

    ADS  Google Scholar 

  41. R.R. Lessard, S.A. Zieminski, Ind. Eng. Chem. Fund. 10, 260 (1971).

    Article  Google Scholar 

  42. V.S.J. Craig, B.W. Ninham, R.M. Pashley, J. Phys. Chem. 97, 10192 (1993).

    Article  Google Scholar 

  43. A. Gracia, G. Morel, P. Saulnier, J. Lachaise, R.S. Schechter, J. Colloid Interface Sci. 172, 131 (1995).

    Article  Google Scholar 

  44. M. Takahashi, J. Phys. Chem. B 109, 21858 (2005).

    Article  Google Scholar 

  45. R. Teshigawara, A. Onuki, Phys. Rev. E 84, 041602 (2011).

    Article  ADS  Google Scholar 

  46. K. Binder, Physica A 319, 99 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  47. T. Yamamoto, S. Ohnishi, Phys. Chem. Chem. Phys. 13, 16142 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuichi Okamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, R., Onuki, A. Bubble formation in water with addition of a hydrophobic solute. Eur. Phys. J. E 38, 72 (2015). https://doi.org/10.1140/epje/i2015-15072-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15072-9

Keywords

Navigation