Skip to main content
Log in

Bulk rheology and microrheology of active fluids

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We simulate macroscopic shear experiments in active nematics and compare them with microrheology simulations where a spherical probe particle is dragged through an active fluid. In both cases we define an effective viscosity: in the case of bulk shear simulations this is the ratio between shear stress and shear rate, whereas in the microrheology case it involves the ratio between the friction coefficient and the particle size. We show that this effective viscosity, rather than being solely a property of the active fluid, is affected by the way chosen to measure it, and strongly depends on details such as the anchoring conditions at the probe surface and on both the system size and the size of the probe particle.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ramaswamy, Annu. Rev. Condens. Matter 1, 323 (2010)

    Article  ADS  Google Scholar 

  2. D. Marenduzzo et al., Phys. Rev. E 76, 031921 (2007)

    Article  ADS  Google Scholar 

  3. E. Tjhung, M.E. Cates, D. Marenduzzo, Soft Matter 7, 7453 (2011)

    Article  ADS  Google Scholar 

  4. M.E. Cates, O. Henrich, D. Marenduzzo, K. Stratford, Soft Matter 5, 3791 (2009)

    Article  ADS  Google Scholar 

  5. R. Voituriez, J.F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)

    Article  ADS  Google Scholar 

  6. R. Voituriez, J.F. Joanny, J. Prost, Phys. Rev. Lett. 96, 028102 (2006)

    Article  ADS  Google Scholar 

  7. C. Dombrowski et al., Phys. Rev. Lett. 93, 098103 (2004)

    Article  ADS  Google Scholar 

  8. Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004)

    Article  ADS  Google Scholar 

  9. T.B. Liverpool, M.C. Marchetti, Phys. Rev. Lett. 97, 268101 (2006)

    Article  ADS  Google Scholar 

  10. M.E. Cates et al., Phys. Rev. Lett. 101, 068102 (2008)

    Article  ADS  Google Scholar 

  11. S. Rafai, L. Jibuti, P. Peyla, Phys. Rev. Lett. 104, 098102 (2010)

    Article  ADS  Google Scholar 

  12. A. Sokolov, I.S. Aranson, Phys. Rev. Lett. 103, 14810 (2009)

    Google Scholar 

  13. T.A. Waigh, Rep. Prog. Phys. 68, 685 (2005)

    Article  ADS  Google Scholar 

  14. D. Bray, Cell Movements: From Molecules to Motility, 2nd edition (Garland Publishing, New York, 2000)

  15. D.T.N. Chen et al., Phys. Rev. Lett. 99, 148302 (2007)

    Article  ADS  Google Scholar 

  16. D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007)

    Article  ADS  Google Scholar 

  17. G. Foffano, J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 109, 028103 (2012)

    Article  ADS  Google Scholar 

  18. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edition (Clarendon Press, Oxford, 1993)

  19. J. Elgeti, M.E. Cates, D. Marenduzzo, Soft Matter 7, 3177 (2011)

    Article  ADS  Google Scholar 

  20. M. Nobili, G. Durand, Phys. Rev. A 46, R6174 (1992)

    Article  ADS  Google Scholar 

  21. J.S. Lintuvuori, D. Marenduzzo, K. Stratford, M.E. Cates, J. Mater. Chem. 20, 10547 (2010)

    Article  Google Scholar 

  22. J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 105, 178302 (2010)

    Article  ADS  Google Scholar 

  23. J.-B. Fournier, P. Galatola, Europhys. Lett. 72, 403 (2005)

    Article  ADS  Google Scholar 

  24. J.S. Lintuvuori, K. Stratford, M.E. Cates, D. Marenduzzo, Phys. Rev. Lett. 107, 267802 (2011)

    Article  ADS  Google Scholar 

  25. M. Conradi et al., Soft Matter 5, 3905 (2009)

    Article  ADS  Google Scholar 

  26. A.N. Beris, B.J. Edwards, Thermodynamics of Flowing Systems (Oxford University Press, Oxford, 1994)

  27. K. Stratford, R. Adhikari, I. Pagonarrabaga, J.-C. Desplat, J. Stat. Phys. 121, 163 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. B. Rubinstein, M.F. Fournier, K.J. Jacobson, A.B. Verkhovsky, A. Mogilner, Biophys. J. 97, 1853 (2009)

    Article  ADS  Google Scholar 

  29. M.S. Silva et al., Proc. Natl. Acad. Sci. U.S.A. 108, 9408 (2011)

    Article  ADS  Google Scholar 

  30. S. Wang, P.G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 109, 6446 (2012)

    Article  ADS  Google Scholar 

  31. L. Giomi, M.C. Marchetti, Soft Matter 8, 129 (2012)

    Article  ADS  Google Scholar 

  32. S.M. Fielding, D. Marenduzzo, M.E. Cates, Phys. Rev. E 83, 041910 (2010)

    Article  ADS  Google Scholar 

  33. H. Hasimoto, J. Fluid. Mech. 5, 317 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. H. Stark, D. Ventzki, Phys. Rev. E 64, 031711 (2001)

    Article  ADS  Google Scholar 

  35. J.C. Loudet, P. Hanusse, P. Poulin, Science 306, 1525 (2004)

    Article  Google Scholar 

  36. S. Ramaswamy, M. Rao, New J. Phys. 9, 423 (2007)

    Article  ADS  Google Scholar 

  37. A. Yao, M. Tassieri, P. Miles, J. Cooper, Lab Chip 9, 2568 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Marenduzzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foffano, G., Lintuvuori, J.S., Morozov, A.N. et al. Bulk rheology and microrheology of active fluids. Eur. Phys. J. E 35, 98 (2012). https://doi.org/10.1140/epje/i2012-12098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12098-5

Keywords

Navigation