Skip to main content
Log in

Motion and mixing for multiple ferromagnetic microswimmers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

This paper concerns the interaction of several ferromagnetic microswimmers, their motion and the resulting fluid mixing. Each swimmer consists of two ferromagnetic beads joined by an elastic link, and is driven by an external, time-dependent magnetic field. The external field provides a torque on a swimmer and, together with the varying attraction between the magnetic beads, generates a time-irreversible motion leading to persistent swimming in a low Reynolds number environment. The aim of the present paper is to consider the interactions between several swimmers. A regime is considered in which identical swimmers move in the same overall direction, and their motion is synchronised because of driving by the external field. It is found that two swimmers tend to encircle one another while three undergo more complicated motion that may involve the braiding of swimmer trajectories. By means of approximations it is established that the interaction between pairs of swimmers gives circulatory motion which falls off with an inverse square law and is linked to their overall speed of motion through the fluid. As groups of two or more swimmers move through the fluid they process fluid, leaving behind a trail of fluid that has undergone mixing: this is investigated by following streak lines numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Lighthill, Annu. Rev. Fluid Mech. 1, 413 (1969).

    Article  ADS  Google Scholar 

  2. S. Childress, Mechanics of Swimming and Flying (Cambridge University Press, 1981).

  3. T. Maxworthy, Annu. Rev. Fluid Mech. 13, 1981 (329).

  4. M.S. Triantafyllou, G.S. Triantafyllou, D.K.P. Yue, Annu. Rev. Fluid Mech. 32, 2000 (33).

  5. Z.J. Wang, Annu. Rev. Fluid Mech. 37, 2005 (183).

  6. A. Najafi, R. Golestanian, Phys. Rev. E 69, 2004 (062901).

  7. D.J. Earl, C.M. Pooley, J.F. Ryder, I. Bredberg, J.M. Yeomans, J. Chem. Phys. 126, 064703 (2007).

    Article  ADS  Google Scholar 

  8. R. Golestanian, A. Ajdari, Phys. Rev. E 77, 036308 (2008).

    Article  ADS  Google Scholar 

  9. S.L. Biswal, A.P. Gast, Anal. Chem. 76, 6448 (2004).

    Article  Google Scholar 

  10. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 04090 (2005).

    Article  Google Scholar 

  11. A. Cēbers, I. Javaitis, Phys. Rev. E 69, 021404 (2004).

    Article  ADS  Google Scholar 

  12. E. Gauger, H. Stark, Phys. Rev. E 74, 021907 (2006).

    Article  ADS  Google Scholar 

  13. E.E. Keaveny, M.R. Maxey, J. Fluid Mech. 598, 293 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagues, Phys. Rev. Lett. 101, 218304 (2008).

    Article  ADS  Google Scholar 

  15. A.R. Shields, B.L. Fiser, B.A. Evans, M.R. Falvo, S. Washburn, R. Superfine, Proc. Nat. Acad. Sci. U.S.A. 107, 15670 (2010).

    Article  ADS  Google Scholar 

  16. M. Vilfan, A. Potocnik, B. Kavcic, N. Osterman, I. Poberaj, A. Vilfan, D. Babic, Proc. Nat. Acad. Sci. U.S.A. 107, 1844 (2010).

    Article  ADS  Google Scholar 

  17. N. Coq, A. Bricard, F.-D. Delapierre, L. Malaquin, O. du Roure, M. Fermigier, D. Bartolo, Phys. Rev. Lett. 107, 014501 (2011).

    Article  ADS  Google Scholar 

  18. F.Y. Ogrin, P.G. Petrov, C.P. Winlove, Phys. Rev. Lett. 100, 218102 (2008).

    Article  ADS  Google Scholar 

  19. A. Vilfan, H. Stark, Phys. Rev. Lett. 103, 199801 (2009).

    Article  ADS  Google Scholar 

  20. F.Y. Ogrin, P.G. Petrov, C.P. Winlove, Phys. Rev. Lett. 103, 199802 (2009).

    Article  ADS  Google Scholar 

  21. A.D. Gilbert, F.Y. Ogrin, P.G. Petrov, C.P. Winlove, Q.J. Mech. Appl. Math. 64, 239 (2011).

    Article  Google Scholar 

  22. E.M. Purcell, Am. J. Phys. 45, 3 (1977).

    Article  ADS  Google Scholar 

  23. B.U. Felderholf, Phys. Fluids 18, 063101 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Friedman, Phys. Fluids 19, 079101 (2007).

    Article  ADS  Google Scholar 

  25. B.U. Felderholf, Phys. Fluids 19, 079102 (2007).

    Article  ADS  Google Scholar 

  26. G. Falcucci, G. Chiatti S. Succi, A.A. Mohamad, A. Kuzmin, Phys. Rev. E 79, 056706 (2009).

    Article  ADS  Google Scholar 

  27. C.M. Pooley, G.P. Alexander, J.M. Yeomans, Phys. Rev. Lett 99, 228103 (2007).

    Article  ADS  Google Scholar 

  28. G.P. Alexander, C.M. Pooley, Y.M. Yeomans, Phys. Rev. E 78, 045302 (2008).

    Article  ADS  Google Scholar 

  29. G.P. Alexander, Y.M. Yeomans, EPL 83, 34006 (2008).

    Article  ADS  Google Scholar 

  30. G.P. Alexander, C.M. Pooley, Y.M. Yeomans, J. Phys.: Condens. Matter 21, 204108 (2009).

    Article  ADS  Google Scholar 

  31. V.B. Putz, J.M. Yeomans, J. Stat. Phys. 137, 1001 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. G.P. Alexander, J.M. Yeomans, Exp. Mech. 50, 1283 (2010).

    Article  Google Scholar 

  33. J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Kluwer, Dordrecht, 1983).

  34. P.L. Boyland, H. Aref, M.A. Stremler, J. Fluid Mech. 403, 277 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J.-L. Thiffeault, Chaos 20, 017516 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  36. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, 1959).

  37. D. Saintillian, M.J. Shelley, Phys. Fluids 20, 123304 (2008).

    Article  ADS  Google Scholar 

  38. T. Ishikawa, T.J. Pedley, Phys. Rev. Lett. 100, 088103 (2008).

    Article  ADS  Google Scholar 

  39. E. Lauga, W.R. DiLuzio, G.M. Whitesides, H.A. Stone, Biophys. J. 90, 400 (2006).

    Article  ADS  Google Scholar 

  40. S. Ebbens, R.A.L. Jones, A.J. Ryan, R. Golestanian, J.R. Howse, Phys. Rev. E 82, 015304 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Gilbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, A.D., Ogrin, F.Y., Petrov, P.G. et al. Motion and mixing for multiple ferromagnetic microswimmers. Eur. Phys. J. E 34, 121 (2011). https://doi.org/10.1140/epje/i2011-11121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11121-9

Keywords

Navigation