Skip to main content
Log in

Kinetic fragility of binary and ternary glass forming liquid mixtures

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The experimental studies of liquid fragility in miscible binary and ternary glass forming mixtures reveal a general observation of the negative deviation in fragility upon mixing from the linear average of those of the components. Further analyses from ideal, near ideal to non-ideal mixing modes show that the deviation magnitude does not increase monotonically with mixing enthalpy, and a moderate intermolecular interaction would generate a largest reduction in fragility. Four eutectic systems, methyl-o-toluate-methyl-p-toluate, ZnCl2-AlCl3, glycerol-water, and fructose-water, are studied to locate the composition where the largest fragility deviation occurs in phase diagrams. It is found that the compositions with the fragility minima do not coincide with the eutectic points. The results partly explain the experimental observation that the best glass forming region is not located at the eutectic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Angell, J.M. Sare, E.J. Sare, J. Phys. Chem. 82, 2622 (1978).

    Article  Google Scholar 

  2. J.M. Gordon, G.B. Rouse, J.H. Gibbs, W.M. Risen, J. Chem. Phys. 66, 4971 (1977).

    Article  ADS  Google Scholar 

  3. P.R. Couchman, Nature (London) 298, 729 (1982).

    Article  ADS  Google Scholar 

  4. Th. Blochowicz, C. Karle, A. Kudlik, P. Medick, I. Roggatz, M. Vogel, Ch. Tschirwitz, J. Wolber, J. Senker, E. Rössler, J. Phys. Chem. B 103, 4032 (1999).

    Article  Google Scholar 

  5. A.L. Greer, Nature (London) 366, 303 (1993).

    Article  ADS  Google Scholar 

  6. G. Foffi, W. Gotze, F. Sciortino, P. Tartaglia, Th. Voigtmann, Phys. Rev. Lett. 91, 085701 (2007).

    Article  ADS  Google Scholar 

  7. P.K. Gupta, J.C. Mauro, J. Chem. Phys. 130, 094503 (2009).

    Article  ADS  Google Scholar 

  8. A. Inoue, Acta Mater. 48, 279 (2000).

    Article  Google Scholar 

  9. D. Turnbull, Contemp. Phys. 10, 473 (1969).

    Article  ADS  Google Scholar 

  10. L.-M. Wang, Z. Li, Z. Chen, Y. Zhao, R. Liu, Y. Tian, J. Phys. Chem. B 114, 12080 (2010).

    Article  Google Scholar 

  11. O.N. Senkov, Phys. Rev. B 76, 104202 (2007).

    Article  ADS  Google Scholar 

  12. E.S. Park, J.H. Na, D.H. Kim, Appl. Phys. Lett. 91, 031907 (2007).

    Article  ADS  Google Scholar 

  13. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000).

    Article  ADS  Google Scholar 

  14. S. Sastry, Nature (London) 409, 164 (2001).

    Article  ADS  Google Scholar 

  15. L.M. Wang, R. Richert, Phys. Rev. Lett. 99, 185701 (2007).

    Article  ADS  Google Scholar 

  16. L.-M. Wang, Y. Tian, R. Liu, Appl. Phys. Lett. 97, 181901 (2010).

    Article  ADS  Google Scholar 

  17. H. Senapati, R.K. Kadiyala, C.A. Angell, J. Phys. Chem. 95, 7050 (1991).

    Article  Google Scholar 

  18. L. Battezzati, A.L. Greer, Acta Metall. 37, 1791 (1989).

    Article  Google Scholar 

  19. S. Mukherjee, Z. Zhou, J. Schroers, W.L. Johnson, W.K. Rhim, Appl. Phys. Lett. 84, 5010 (2004).

    Article  ADS  Google Scholar 

  20. S. Mukherjee, J. Schroers, W.L. Johnson, W.-K. Rhim, Phys. Rev. Lett. 94, 245501 (2005).

    Article  ADS  Google Scholar 

  21. S. Kojima, V.N. Novikov, M. Kodama, J. Chem. Phys. 113, 6344 (2000).

    Article  ADS  Google Scholar 

  22. R. Fabian Jr., D.L. Sidebottom, Phys. Rev. B 80, 064201 (2009).

    Article  ADS  Google Scholar 

  23. P.G. Santangelo, C.M. Roland, K.L. Ngai, A.K. Rizos, H. Katerinopoulos, J. Non-Cryst. Solids 172-174, 1084 (1994).

    Article  ADS  Google Scholar 

  24. M. Cutroni, A. Mandanici, L. De Francesco, J. Non-Cryst. Solids 307-310, 449 (2002).

    Article  ADS  Google Scholar 

  25. W. Huang, S. Shahriari, R. Richert, J. Chem. Phys. 123, 164504 (2005).

    Article  ADS  Google Scholar 

  26. A. Minoguchi, K. Kitai, R. Nozaki, Phys. Rev. E 68, 031501 (2003).

    Article  ADS  Google Scholar 

  27. M.S. Beevers, J. Crossley, D.C. Garrington, G. Williams, J. Chem. Soc. Fraday Trans. 73, 458 (1977).

    Article  Google Scholar 

  28. B. Gerharz, G. Meier, E.W. Fischer, J. Chem. Phys. 92, 7110 (1990).

    Article  ADS  Google Scholar 

  29. L.-M. Wang, Y. Tian, R. Liu, R. Richert, J. Phys. Chem. B 144, 3618 (2010).

    Article  Google Scholar 

  30. L.-M. Wang, Y. Zhao, M. Sun, R. Liu, Y. Tian, Phys. Rev. E 82, 062502 (2010).

    Article  ADS  Google Scholar 

  31. C.A. Angell, Chem. Rev. 102, 2627 (2002).

    Article  Google Scholar 

  32. E.J. Sutter, C.A. Angell, J. Phys. Chem. 75, 1826 (1971).

    Article  Google Scholar 

  33. A. Mùgica, M.E. Calahorra, M. Cortázar, Macromol. Chem. Phys. 203, 1088 (2002).

    Article  Google Scholar 

  34. A.V. Lesikar, J. Phys. Chem. 80, 1005 (1976).

    Article  Google Scholar 

  35. A.V. Lesikar, J. Chem. Phys. 66, 4263 (1977).

    Article  ADS  Google Scholar 

  36. K. Takeda, O. Yamamuro, H. Suga, J. Therm. Anal. 38, 1847 (1992).

    Article  Google Scholar 

  37. K. Takeda, K. Murata, S. Yamashita, J. Non-Cryst. Solids 231, 273 (1998).

    Article  ADS  Google Scholar 

  38. K. Takeda, K. Murata, S. Yamashita, J. Phys. Chem. B 103, 3457 (1998).

    Article  Google Scholar 

  39. G.G. Naumis, Phys. Rev. B 73, 172202 (2006).

    Article  ADS  Google Scholar 

  40. K. Duvvuri, R. Richert, J. Phys. Chem. B 108, 10451 (2004).

    Article  Google Scholar 

  41. L.-M. Wang, R. Richert, J. Phys. Chem. B 109, 11091 (2005).

    Article  Google Scholar 

  42. K. Putz, P.F. Green, J. Non-Cryst. Solids 337, 254 (2004).

    Article  ADS  Google Scholar 

  43. L.A. Shadowspeaker, R. Busch, Appl. Phys. Lett. 85, 2508 (2004).

    Article  ADS  Google Scholar 

  44. H.-J. Fecht, W.L. Johnson, Mater. Sci. Eng. A 375-377, 2 (2004).

    Article  Google Scholar 

  45. S. Pedersen, Viscosity, structure and glass formation in the AlCl_3-ZnCl_2 system, PhD thesis, Norges Teknisknaturvitenskaplige Universitet, Avhandling NR (2001).

  46. Q. Qin, G.B. McKenna, J. Non-Cryst. Solids 352, 2977 (2006).

    Article  ADS  Google Scholar 

  47. D. Cubicciotti, H. Eding, J. Chem. Phys. 40, 978 (1994).

    Article  ADS  Google Scholar 

  48. P. Patnaik (Editor), Handbook of Inorganic Materials (McGraw-Hill, New York, 2003).

  49. S. Jabrane, J.M. Letoffe, J.J. Counioux, P. Claudy, Thermochim. Acta 290, 31 (1996).

    Article  Google Scholar 

  50. S. Sudo, M. Shimomura, N. Shinyashiki, S. Yagihara, J. Non-Cryst. Solids 307-310, 356 (2002).

    Article  ADS  Google Scholar 

  51. P. Walstra, Physical Chemistry of Foods (Marcel Dekker Inc. New York, 2001).

  52. P.M. Mehl, Thermochim. Acta 324, 215 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Min Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, H., Sun, M., Li, Z. et al. Kinetic fragility of binary and ternary glass forming liquid mixtures. Eur. Phys. J. E 34, 86 (2011). https://doi.org/10.1140/epje/i2011-11086-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11086-7

Keywords

Navigation