Skip to main content
Log in

Confined diffusion of hydrophilic probes inserted in lyotropic lamellar phases

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The dynamic behaviour of three hydrophilic probes (two dyes and one fluorescently-labelled protein) inserted in the water layers of lyotropic lamellar phases has been studied by confocal fluorescence recovery experiments. Two different, ionic (AOT/NaCl/ H2O and non-ionic ( C12E5 /hexanol/ H2O host systems were studied. The confinement effect has been carefully monitored using the swelling properties of the lamellar phases. In all cases, we measure the evolution of the probe diffusion coefficient in the layer plane D versus the separation between the membranes dw. Depending on the composition of the lamellar phase, this distance can be continuously adjusted from 500Å to about 20Å. For all systems, we observe a first regime, called dilute regime, where the diffusion coefficient decreases almost linearly with 1/d w . In this regime, the Faxén theory for the friction coefficient of a spherical particle symmetrically dragged between two rigid walls can largely explain our results. More unexpectedly, when the membranes are non-ionic, and also quite flexible ( C12E5 /hexanol in water), we observe the existence of a second, concentrated (or confined) regime, where the diffusion coefficient is nearly constant and different from zero for membrane separations smaller than the particle size. This new regime can be heuristically explained by simple arguments taking into account the membrane fluidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Tolédano, A.M. Figueiredo Neto, Phase Transitions in Complex Fluids (World Scientific, River Edge, NJ, 1998).

  2. See, e.g., W.M. Gelbart, A. Ben-Shaul, D. Roux (Editors), Micelles, Membranes, Microemulsions and Monolayers (Springer-Verlag, New York, 1994).

  3. P. Kékicheff, B. Cabane, M. Rawiso, J. Colloid Interface Sci. 102, 51 (1984).

    Article  Google Scholar 

  4. M. Singh, R. Ober, M. Kléman, J. Phys. Chem. 97, 11108 (1993).

    Article  Google Scholar 

  5. C. Ligoure, B. Bouglet, G. Porte, Phys. Rev. Lett. 71, 3600 (1993).

    Article  ADS  Google Scholar 

  6. E.Z. Radlinska, T. Gulik-Krzywicki, F. Lafuma, D. Langevin, W. Urbach, C.E. Williams, R. Ober, Phys. Rev. Lett. 74, 4237 (1997).

    Article  ADS  Google Scholar 

  7. M.-F. Ficheux, A.-M. Bellocq, F. Nallet, J. Phys. II 5, 823 (1995).

    Article  Google Scholar 

  8. J. Kötz, S. Kosmella, Curr. Opin. Colloid Interface Sci. 4, 348 (1999).

    Article  Google Scholar 

  9. P. Fabre, C. Casagrande, M. Veyssié, V. Cabuil, R. Massart, Phys. Rev. Lett. 64, 539 (1990).

    Article  ADS  Google Scholar 

  10. V. Ponsinet, P. Fabre, J. Phys. II 6, 955 (1996).

    Article  Google Scholar 

  11. P.L. Felgner, T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, G.M. Ringold, M. Danielsen, Proc. Natl. Acad. Sci. U.S.A. 84, 7413 (1987).

    Article  ADS  Google Scholar 

  12. J.O. Rädler, I. Kotlover, T. Salditt, C.R. Safinya, Science 275, 810 (1997).

    Article  Google Scholar 

  13. E.M. Landau, G. Rummel, S.W. Cowan-Jacob, J.P. Rosenbusch, J. Phys. Chem. B 101, 1935 (1997).

    Article  Google Scholar 

  14. M. Caffray, J. Struct. Biol. 142, 108 (2003).

    Article  Google Scholar 

  15. D.M. Anderson, H. Wennerström, J. Phys. Chem. 94, 8683 (1990).

    Article  Google Scholar 

  16. P. Fabre, C. Quilliet, M. Veyssié, F. Nallet, D. Roux, V. Cabuil, R. Massart, Europhys. Lett. 20, 229 (1992).

    Article  ADS  Google Scholar 

  17. Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N.S. Gov, M. Genest, R.S. Hodges, W. Urbach, Proc. Natl. Acad. Sci. U.S.A. 103, 2098 (2006).

    Article  ADS  Google Scholar 

  18. P. Cicuta, S.L. Keller, S.L. Veatch, J. Phys. Chem. B 111, 3328 (2007).

    Article  Google Scholar 

  19. A. Naji, A.J. Levine, P.A. Pincus, Biophys. J. 93, L49 (2007).

  20. S. Kim, S.J. Karrila, Microhydrodynamics. Principles and Selected Applications (Dover Publications, Inc., Mineola, NY, 2005).

  21. P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975).

    Article  ADS  Google Scholar 

  22. B.D. Hughes, B.A. Pailthorpe, L.R. White, J. Fluid Mech. 110, 349 (1981).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Pralle, E.L. Florin, E.H.K. Stelzer, J.K.H. Horber, Appl. Phys. A: Mater. Sci. Process. 66, S71 (1998).

  24. Y.S. Ho, C.S. Johnson jr, J. Chem. Phys. 74, 2717 (1981).

    Article  ADS  Google Scholar 

  25. M. Jonströmer, R. Strey, J. Phys. Chem. 96, 5993 (1992).

    Article  Google Scholar 

  26. É. Freyssingeas, F. Nallet, D. Roux, Langmuir 12, 6028 (1996).

    Article  Google Scholar 

  27. W. Helfrich, Z. Naturforsch. A 33, 305 (1978).

    ADS  Google Scholar 

  28. K. Fontell, in Colloid dispersion and micellar behavior, ACS Symp. Ser. 9 (American Chemical Society, Washington DC, 1975) p. 270.

  29. M. Skouri, J. Marignan, R. May, Colloid Polym. Sci. 269, 929 (1991).

    Article  Google Scholar 

  30. T.K.L. Meyris, S.C. De Smedt, P. Van Oostveldt, J. Demeester, Pharm. Res. 16, 1153 (1999).

    Article  Google Scholar 

  31. D. Axelrod, D.E. Koppel, J. Schlessinger, E. Elson, W.W. Webb, Biophys. J. 16, 1055 (1976).

    Article  ADS  Google Scholar 

  32. S. Seiffert, W. Oppermann, J. Microscopy 220, 20 (2005).

    Article  MathSciNet  Google Scholar 

  33. E.L. Gelamo, R. Itri, A. Alonso, J. Vasques da Silva, M. Tabak, J. Colloid Interface Sci. 277, 471 (2004).

    Article  Google Scholar 

  34. P. Ganatos, S. Weinbaum, J. Pfeffer, J. Fluid Mech. 99, 739 (1980).

    Article  ADS  MATH  Google Scholar 

  35. P. Ganatos, R. Pfeffer, S. Weinbaum, J. Fluid Mech. 99, 755 (1980).

    Article  ADS  MATH  Google Scholar 

  36. E. Gavze, M. Shapiro, Int. J. Multiphase Flow 23, 155 (1997).

    Article  MATH  Google Scholar 

  37. H. Faxén, Ann. Phys. (Leipzig) 68, 89 (1922), quoted from J. Happel, B. Brenner, in Low Reynolds Number Hydrodynamics (Kluwer Academic Publishers Group, Dordrecht, 1983).

    ADS  Google Scholar 

  38. S.H. Lee, R.S. Chadwick, L.G. Leal, J. Fluid Mech. 93, 705 (1979).

    Article  ADS  MATH  Google Scholar 

  39. A. Einstein, Ann. Phys. (N.Y.) 17, 549 (1905), quoted from A. Einstein, in Investigations on the Theory of the Brownian Movement (Dover, New York, 1956).

    ADS  Google Scholar 

  40. L.P. Faucheux, A.J. Libchaber, Phys. Rev. E 49 (1994) 5158.

    Google Scholar 

  41. D.G. Grier, Curr. Opin. Colloid Interface Sci. 2, 264 (1997).

    Article  Google Scholar 

  42. B. Lin, J. Yu, S.A. Rice, Phys. Rev. E 62, 3909 (2000).

    Article  ADS  Google Scholar 

  43. E.R. Dufresne, D. Altman, D.G. Grier, Europhys. Lett. 53, 264 (2001).

    Article  ADS  Google Scholar 

  44. L. Lobry, N. Ostrowsky, Phys. Rev. B 53, 12050 (1996).

    Article  ADS  Google Scholar 

  45. F. Nadal, A. Dazzi, F. Argoul, B. Pouligny, Appl. Phys. Lett. 79, 3887 (2001).

    Article  ADS  Google Scholar 

  46. P. Lançon, G. Batroumi, L. Lobry, N. Ostrowsky, Physica A 304, 65 (2002).

    Article  ADS  Google Scholar 

  47. B. Cui, H. Diamant, B. Lin, S.A. Rice, Phys. Rev. Lett. 92, 258301 (2004).

    Article  ADS  Google Scholar 

  48. Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T.C. Lubensky, A.G. Yogh, Science 314, 626 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  49. E.A.J. Reits, J.J. Neefjes, Nat. Cell Biol. 3, 145 (2001).

    Article  Google Scholar 

  50. N. Kahya, E.-I. Pecheur, W.P. de Boeij, D.A. Wiersam, D. Hoekstra, Biophys. J. 81, 1464 (2001).

    ADS  Google Scholar 

  51. N. Tsapis, F. Reiss-Husson, R. Ober, M. Genest, R.S. Hodges, W. Urbach, Biophys. J. 81, 1613 (2001).

    ADS  Google Scholar 

  52. T. Bickel, M. Benhamou, H. Ka\"ıdi, Phys. Rev. E 70, 051401 (2004).

    Article  ADS  Google Scholar 

  53. B. Tenchov, R. Koynova, M. Rappolt, G. Rapp, Biochim. Biophys. Acta 1417, 183 (1999).

    Article  Google Scholar 

  54. J.F. Nagle, S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000).

    Google Scholar 

  55. A. Das, R. Chitra, R.R. Choudhury, M. Ramanadham, Pramana-J. Phys. 63, 363 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nallet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreau, P., van Effenterre, D., Navailles, L. et al. Confined diffusion of hydrophilic probes inserted in lyotropic lamellar phases. Eur. Phys. J. E 26, 225–234 (2008). https://doi.org/10.1140/epje/i2007-10318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10318-9

PACS.

Navigation