Skip to main content
Log in

Dynamics of propylene glycol and its oligomers confined in clay

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The dynamics of propylene glycol (PG) and its oligomers 7-PG and PPG, with \(M_{{\rm W}} = 4000\) (about 70 monomers), confined in a Na-vermiculite clay have been investigated by quasi-elastic neutron scattering and dielectric spectroscopy. The liquids are confined to a single molecular layer between the clay platelets, thus giving a true 2D liquid. The results show that the average relaxation time \(\langle\tau\rangle\), deduced from neutron scattering at a momentum transfer Q of about \(1 \; {\rm {\AA}^{-1}}\), is in perfect agreement with the dielectric \(\alpha\)-relaxation time, although neutron scattering does not only probe the main (\(\alpha\)-) relaxation, but all motions of hydrogens on the experimental time scale. At room temperature \(1/\langle\tau\rangle\) is proportional to Q 2, indicating that the relaxations are mainly due to ordinary translational diffusion. The most unexpected finding is that \(\langle\tau\rangle\) (or the dielectric \(\alpha\)-relaxation time) is almost unaffected by the 2D confinement, in contrast to the dielectrically active normal mode of PPG which is substantially slower in the confinement. Only the 7-mer has a significantly slower segmental translational diffusion in the clay. The results suggest that the interactions to the clay surfaces are weak and that the present 2D confinement has a very small influence on the time scale of all our observed relaxation processes, except the normal-mode relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Anastasiadis, K. Karatasos, G. Vlachos, E. Manias, E.P. Giannelis, Phys. Rev. Lett. 84, 915 (2000).

    Article  Google Scholar 

  2. D.B. Zax, D.-K. Yang, R.A. Santos, H. Hegemann, E.P. Giannelis, E. Manias, J. Chem. Phys. 112, 2945 (2000).

    Article  Google Scholar 

  3. E. Manias, V. Kuppa, D.-K. Yang, D.B. Zax, Colloids Surf. A 187-188, 509 (2001).

    Google Scholar 

  4. J. Schüller, Y.B. Melnichenko, R. Richert, E.W. Fischer, Phys. Rev. Lett. 73, 2224 (1994).

    Article  Google Scholar 

  5. Y.B. Melnichenko, J. Schuller, R. Richert, B. Ewen, C.K. Loong, J. Chem. Phys. 103, 2016 (1995).

    Article  Google Scholar 

  6. R. Yamamoto, K. Kim, J. Phys. IV 10, PR7, 15 (2000).

  7. G. Barut, P. Pissis, R. Pelster, G. Nimtz, Phys. Rev. Lett. 80, 3543 (1998).

    Article  Google Scholar 

  8. A. Schönhals, R. Stauga, J. Chem. Phys. 112, 5130 (1998).

    Article  Google Scholar 

  9. A. Schönhals, R. Stauga, J. Non-Cryst. Solids 235-237, 450 (1998).

  10. A. Huwe, F. Kremer, P. Behrens, W. Schwieger, Phys. Rev. Lett. 82, 2338 (1999).

    Article  Google Scholar 

  11. J. Baschnagel, C. Mischler, K. Binder, J. Phys. IV 10, PR7, 9 (2000).

    Google Scholar 

  12. A. Huwe, J. Phys. IV 10, PR7, 59 (2000).

  13. J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002

    Article  Google Scholar 

  14. J.A. Forrest, J. Mattsson, Phys. Rev. E 61, 53 (2000).

    Article  Google Scholar 

  15. R. Bergman, in preparation.

  16. J. Swenson, W.S. Howells, J. Chem. Phys. 117, 857 (2002).

    Article  Google Scholar 

  17. J. Swenson, I. Köper, M.T.F. Telling, J. Chem. Phys. 116, 5073 (2002).

    Article  Google Scholar 

  18. J. Swenson, submitted to J. Chem. Phys.

  19. G.A. Schwartz, R. Bergman, J. Swenson, submitted to J. Chem. Phys.

  20. G.A. Schwartz, R. Bergman, J. Mattsson, J. Swenson, Dielectric relaxation studies of poly(propylene glycol) confined in vermiculite clay, to appear in EPJ E Direct (2003).

  21. R. Bergman, C. Svanberg, D. Andersson, A. Brodin, L.M. Torell, J. Non-Cryst. Solids 235-237, 225 (1998).

    Google Scholar 

  22. P. Carlsson, J. Swenson, L. Börjesson, L.M. Torell, R.L. McGreevy, W.S. Howells, J. Chem. Phys. 109, 8719 (1998).

    Article  Google Scholar 

  23. R. Kohlrausch, Ann. Phys. (Leipzig) 72, 383 (1847).

    Google Scholar 

  24. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970).

    Google Scholar 

  25. C.P. Lindsey, G.D. Patterson, J. Chem. Phys. 73, 3348 (1980).

    Article  Google Scholar 

  26. P.L. Hall, D.K. Ross, Mol. Phys. 42, 673 (1981).

    Google Scholar 

  27. H. Vogel, Phys. Z 22, 645 (1921)

    Google Scholar 

  28. K. Kojio, S. Jeon, S. Granick, Eur. Phys. J. E 8, 167 (2002).

    Google Scholar 

  29. J. Baschnagel, K. Binder, Mat. Res. Soc. Symp. Proc. 543, 157 (1999).

    Google Scholar 

  30. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 52, 277 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Swenson.

Additional information

Received: 1 January 2003, Published online: 8 October 2003

PACS:

61.25.Em Molecular liquids - 68.35.Ja Surface and interface dynamics and vibrations - 61.12.-q Neutron diffraction and scattering

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swenson, J., Schwartz, G.A., Bergman, R. et al. Dynamics of propylene glycol and its oligomers confined in clay. Eur. Phys. J. E 12, 179–183 (2003). https://doi.org/10.1140/epje/i2003-10033-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10033-7

Keywords

Navigation