Skip to main content
Log in

Tunnelling of spin-orbit coupled Bose-Einstein condensates in driven double-well potential

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The tunnelling dynamics of spin-orbit (SO) coupled Bose-Einstein condensates in a periodically driven double-well potential are investigated both theoretically and numerically. We find that, when the SO coupling is absent, the atomic interactions suppress the tunnelling (as in usual Bose-Einstein condensed system), and the Zeeman field does not influence the usual tunnelling. When the SO coupling is present, the coupling of the atomic interactions and the Zeeman-field intensity can either enhance or suppress the tunnelling. The system undergoes rich transformations from the coherent tunnelling (CT) to the coherent destruction of tunnelling (CDT) when the SO coupling or the atomic interactions or the Zeeman-field intensity changes. In high-frequency region, the triangular structure and the circle structure are revealed in quasi-energy bands of the system, the width of the triangular structure or the circle structure and the localization width are relevant. And the SO coupling modifies traditional degenerate modes of quasi-energy bands. The results provide a possible way to control the usual tunnelling and the spin-flipping tunnelling in double-well potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, Phys. Rev. Lett. 67, 516 (1991)

    Article  ADS  Google Scholar 

  2. M. Grifoni, P. Hänggi, Phys. Rep. 304, 229 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Kohler, J. Lehmann, P. Hänggi, Phys. Rep. 406, 379 (2005)

    Article  ADS  Google Scholar 

  4. K. Yosuke, S. Keiji, Phys. Rev. A 77, 010101(R) (2008)

    Article  Google Scholar 

  5. L.P. Li, X.B. Luo, X.Y. Lü, X.X. Yang, Y. Wu, Phys. Rev. A 91, 063804 (2015)

    Article  ADS  Google Scholar 

  6. G. Della Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, Phys. Rev. Lett. 98, 263601 (2007)

    Article  ADS  Google Scholar 

  7. E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M.K. Oberthaler, Phys. Rev. Lett. 100, 190405 (2008)

    Article  ADS  Google Scholar 

  8. A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, Phys. Rev. A 79, 013611 (2009)

    Article  ADS  Google Scholar 

  9. X.B. Luo, L.P. Li, L. You, B. Wu, New J. Phys. 16, 013007 (2014)

    Article  ADS  Google Scholar 

  10. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  11. R. Franzosi, M. Cristiani, C. Sias, E. Arimondo, Phys. Rev. A 74, 013403 (2006)

    Article  ADS  Google Scholar 

  12. S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Phys. Rev. A 59, 620 (1999)

    Article  ADS  Google Scholar 

  13. Q.H. Song, C. Zeng, S.M. Xiao, Phys. Rev. A 87, 013831 (2013)

    Article  ADS  Google Scholar 

  14. S. Longhi, Phys. Rev. A 86, 044102 (2012)

    Article  ADS  Google Scholar 

  15. C.E. Creffield, F. Sols, Phys. Rev. Lett. 100, 250402 (2008)

    Article  ADS  Google Scholar 

  16. S. Longhi, J. Phys.: Condens. Matter 24, 435601 (2012)

    ADS  Google Scholar 

  17. M. Holthaus, Phys. Rev. A 64, 011601(R) (2001)

    Article  ADS  Google Scholar 

  18. X.B. Luo, Q.T. Xie, B. Wu, Phys. Rev. A 76, 051802(R) (2007)

    Article  ADS  Google Scholar 

  19. J. Gong, L. Morales-Molina, P. Hänggi, Phys. Rev. Lett. 103, 133002 (2009)

    Article  ADS  Google Scholar 

  20. Y.J. Lin, K. Jiménez-García, I.B. Spielman, Nature 471, 83 (2011)

    Article  ADS  Google Scholar 

  21. N.R. Cooper, Phys. Rev. Lett. 106, 175301 (2011)

    Article  ADS  Google Scholar 

  22. W.Y. Wang, H. Cao, S.L. Zhu, J. Liu, L.B. Fu, Laser Phys. 25, 025501 (2015)

    Article  ADS  Google Scholar 

  23. W.Y. Wang, H. Cao, J. Liu, L.B. Fu, Phys. Lett. A 379, 1762 (2015)

    Article  ADS  Google Scholar 

  24. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  25. B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  26. Y.A. Chen, S. Nascimbène, M. Aidelsburger, M. Atala, S. Trotzky, I. Bloch, Phys. Rev. Lett. 107, 210405 (2011)

    Article  ADS  Google Scholar 

  27. S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger, A.M. Rey, A. Polkovnikov, E.A. Demler, M.D. Lukin, I. Bloch, Science 319, 298 (2008)

    Article  ADS  Google Scholar 

  28. C. Castelnovo, J.S. Caux, S.H. Simon, Phys. Rev. A 93, 013613 (2016)

    Article  ADS  Google Scholar 

  29. J. D’Ambroise, M. Salerno, P.G. Kevrekidis, F.K. Abdullaev, Phys. Rev. A 92, 053621 (2015)

    Article  ADS  Google Scholar 

  30. W. Cairncross, A. Pelster, Eur. Phys. J. D 68, 106 (2014)

    Article  ADS  Google Scholar 

  31. H. Jiang, H. Susanto, T.M. Benson, K.A. Cliffe, Phys. Rev. A 89, 013828 (2014)

    Article  ADS  Google Scholar 

  32. A. Lazarides, A. Das, R. Moessner, Phys. Rev. Lett. 115, 030402 (2015)

    Article  ADS  Google Scholar 

  33. P.M. Poggi, F.J. Arranz, R.M. Benito, F. Borondo, D.A. Wisniacki, Phys. Rev. A 90, 062108 (2014)

    Article  ADS  Google Scholar 

  34. J. Larson, J. Martikainen, A. Collin, E. Sjöqvist, Phys. Rev. A 82, 043620 (2010)

    Article  ADS  Google Scholar 

  35. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  36. D. Peter, K. Pawlowski, T. Pfau, K. Rzażewski, J. Phys. B 45, 225302 (2012)

    Article  ADS  Google Scholar 

  37. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  38. A. Eckardt, C. Weiss, M. Holthaus, Phys. Rev. Lett. 95, 260404 (2005)

    Article  ADS  Google Scholar 

  39. R. Qi, X.L. Yu, Z.B. Li, W.M. Liu, Phys. Rev. Lett. 102, 185301 (2009)

    Article  ADS  Google Scholar 

  40. X.B. Luo, Q.T. Xie, B. Wu, Phys. Rev. A 77, 053601 (2008)

    Article  ADS  Google Scholar 

  41. Z.F. Yu, J.K. Xue, Phys. Rev. A 90, 033618 (2014)

    Article  ADS  Google Scholar 

  42. Y.P. Zhang, C.W. Zhang, Phys. Rev. A 87, 023611 (2013)

    Article  ADS  Google Scholar 

  43. Y. Seol, D.L. Stein, K. Visscher, Phys. Rev. Lett. 103, 050601 (2009)

    Article  ADS  Google Scholar 

  44. D.W. Zhang, L.B. Fu, Z.D. Wang, S.L. Zhu, Phys. Rev. A 85, 043609 (2012)

    Article  ADS  Google Scholar 

  45. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  46. M. Melé-Messeguer, B. Juliá-Díaz, M. Guilleumas, A. Polls, A. Sanpera, New J. Phys. 13, 033012 (2011)

    Article  ADS  Google Scholar 

  47. L. Pezzé, A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Esteve, C. Gross, A. Weller, S. Giovanazzi, M.K. Oberthaler, Nature 455, 1216 (2008)

    Article  ADS  Google Scholar 

  49. M.C. Tichy, M.K. Pedersen, K. Mølmer, J.F. Sherson, Phys. Rev. A 87, 063422 (2013)

    Article  ADS  Google Scholar 

  50. I. Březinová, L.A. Collins, K. Ludwig, B.I. Schneider, J. Burgdörfer, Phys. Rev. A 83, 043611 (2011)

    Article  ADS  Google Scholar 

  51. C. Weiss, N. Teichmann, Phys. Rev. Lett. 100, 140408 (2008)

    Article  ADS  Google Scholar 

  52. A. Szameit, Y.V. Kartashov, F. Dreisow, M. Heinrich, T. Pertsch, S. Nolte, A. Tünnermann, V.A. Vysloukh, F. Lederer, L. Torner, Phys. Rev. Lett. 102, 153901 (2009)

    Article  ADS  Google Scholar 

  53. M. Holthaus, Phys. Rev. A 64, 011601(R) (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Kui Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, ZX., Zhang, AX. & Xue, JK. Tunnelling of spin-orbit coupled Bose-Einstein condensates in driven double-well potential. Eur. Phys. J. D 70, 169 (2016). https://doi.org/10.1140/epjd/e2016-60637-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60637-4

Keywords

Navigation