Skip to main content
Log in

The structures and properties of FeSin/FeSi\hbox{$_{\mathsf{n}}^{+}$}+n/FeSi\hbox{$_{\mathsf{n}}^{-}$}−n (n = 1 ~ 8) clusters

  • Regular Article
  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The geometry, stability, and electronic properties of iron-doped silicon clusters FeSi n /FeSi\hbox{$_{n}^{+}$}+n/FeSi\hbox{$_{n}^{-}$}−n (n = 1 ~ 8) have been systematically investigated using the density functional theory (DFT) approach at the B3LYP/6-311+G* level. Our results show that the ground state structures of FeSi n /FeSi\hbox{$_{n}^{+}$}+n/FeSi\hbox{$_{n}^{-}$}−n change from planar to three-dimensional for n > 3. Bipyramidal structures, or their face-capped isomers, are favored for the larger clusters. For neutral FeSi n clusters, their ground state structures are the trigonal, tetragonal, capped tetragonal, capped pentagonal, and combined tetragonal bipyramids for n = 4 ~ 8, respectively. The lowest-energy structures of the anionic FeSi\hbox{$_{n}^{-}$}−n clusters essentially retain similar frameworks to their neutral counterparts, while those of the cationic FeSi\hbox{$_{n}^{+}$}+n clusters are significantly deformed; this is confirmed by their calculated ionization potential and electronic affinity values. For most of the stable structures, the spin electronic configurations are s = 1 or 2 for neutral FeSi n , s = 3/2 or 5/2 for ionic FeSi\hbox{$_{n}^{+}$}+n/FeSi\hbox{$_{n}^{-}$}−n. The average binding energy values generally increase with increasing cluster size, indicating the clusters can continue to gain energy during the growth process. Fragmentation and second-order energy peaks (maxima) are found at n = 2, 5, and 7 for FeSi n /FeSi\hbox{$_{n}^{-}$}−n, n = 4 and 6 for FeSi\hbox{$_{n}^{+}$}+n, suggesting that these clusters possess higher relative stability. Furthermore, the HOMO-LUMO gap values show that anionic FeSi\hbox{$_{n}^{-}$}−n have greater chemical reactivity than cationic FeSi\hbox{$_{n}^{+}$}+n and neutral FeSi n , except when n = 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.M. Beck, J. Chem. Phys. 90, 6306 (1989)

    Article  ADS  Google Scholar 

  2. H. Hiura, T. Miyazaki, T. Kanayama, Phys. Rev. Lett. 86, 1733 (2001)

    Article  ADS  Google Scholar 

  3. M. Ohara, K. Koyasu, A. Nakajima, K. Kaya, Chem. Phys. Lett. 371, 490 (2003)

    Article  ADS  Google Scholar 

  4. W.J. Zheng, J.M. Nilles, D. Radisic, K.H. Bowen Jr., J. Chem. Phys. 122, 071101 (2005)

    Article  ADS  Google Scholar 

  5. S.N. Khanna, B.K. Rao, P. Jena, Phys. Rev. Lett. 89, 016803 (2002)

    Article  ADS  Google Scholar 

  6. A. Grubisic, Y.J. Ko, H.P. Wang, K.H. Bowen, J. Am. Chem. Soc. 131, 10783 (2009)

    Article  Google Scholar 

  7. J.B. Jaeger, T.D. Jaeger, M.A. Duncan, J. Phys. Chem. A 110, 9310 (2006)

    Article  Google Scholar 

  8. K. Koyasu, J. Atobe, M. Akutsu, M. Mitsui, A. Nakajima, J. Phys. Chem. A 111, 42 (2007)

    Article  Google Scholar 

  9. L.J. Guo, G.F. Zhao, Y.Z. Gu, X. Liu, Z. Zeng, Phys. Rev. B 77, 195417 (2008)

    Article  ADS  Google Scholar 

  10. J. Lu, S. Nagase, Phys. Rev. Lett. 90, 115506 (2003)

    Article  ADS  Google Scholar 

  11. R. Robles, S.N. Khanna, J. Chem. Phys. 130, 164313 (2009)

    Article  ADS  Google Scholar 

  12. C.Y. Xiao, A. Abraham, R. Quinn, F. Hagelberg, W.A. Lester Jr., J. Phys. Chem. A 106, 11380 (2002)

    Article  Google Scholar 

  13. L.J. Guo, X. Liu, G.F. Zhao, Y.H. Luo, J. Chem. Phys. 126, 234704 (2007)

    Article  ADS  Google Scholar 

  14. H.G. Xu, Z.G. Zhang, Y. Feng, J.Y. Yuan, Y.C. Zhao, W.J. Zheng, Chem. Phys. Lett. 487, 204 (2010)

    Article  ADS  Google Scholar 

  15. J.G. Han, F. Hagelberg, Chem. Phys. 263, 255 (2001)

    Article  Google Scholar 

  16. H. Kawamura, V. Kumar, Y. Kawazoe, Phys. Rev. B 70, 245433 (2004)

    Article  ADS  Google Scholar 

  17. J.R. Li, G.H. Wang, C.H. Yao, Y.W. Mu, J.G. Wan, M. Han, J. Chem. Phys. 130, 164514 (2009)

    Article  ADS  Google Scholar 

  18. J.G. Wang, J.J. Zhao, L. Ma, B.L. Wang, G.H. Wang, Phys. Lett. A 367, 335 (2007)

    Article  ADS  Google Scholar 

  19. Z.Y. Ren, F. Li, P. Guo, J.G. Han, J. Mol. Struct. Theochem 718, 165 (2005)

    Article  Google Scholar 

  20. J.R. Li, C.H. Yao, Y.W. Mu, J.G. Wan, M. Han, J. Mol. Struct. Theochem 916, 139 (2009)

    Article  Google Scholar 

  21. C.Y. Xiao, F. Hagelberg, W.A. Lester Jr., Phys. Rev. B 66, 075425 (2002)

    Article  ADS  Google Scholar 

  22. Y.Z. Lan, Y.L. Feng, Phys. Rev. A 79, 033201 (2009)

    Article  ADS  Google Scholar 

  23. A.P. Yang, Z.Y. Ren, P. Guo, G.H. Wang, J. Mol. Struct. Theochem 856, 88 (2008)

    Article  Google Scholar 

  24. J. Wang, J.G. Han, J. Chem. Phys. 123, 064306 (2005)

    Article  ADS  Google Scholar 

  25. J.G. Han, R.N. Zhao, Y.H. Duan, J. Phys. Chem. A 111, 2148 (2007)

    Article  Google Scholar 

  26. F.C. Chuang, Y.Y. Hsieh, C.C. Hsu, M.A. Albao, J. Chem. Phys. 127, 144313 (2007)

    Article  ADS  Google Scholar 

  27. P. Guo, Z.Y. Ren, F. Wang, J. Bian, J.G. Han, G.H. Wang, J. Chem. Phys. 121, 12265 (2004)

    Article  ADS  Google Scholar 

  28. P. Guo, Z.Y. Ren, A.P. Yang, J.G. Han, J. Bian, G.H. Wang, J. Phys. Chem. A 110, 7453 (2006)

    Article  Google Scholar 

  29. J.G. Han, C.Y. Xiao, F. Hagelberg, Struct. Chem. 13, 173 (2002)

    Article  Google Scholar 

  30. J.G. Han, Z.Y. Ren, B.Z. Lu, J. Phys. Chem. A 108, 5100 (2004)

    Article  Google Scholar 

  31. J.G. Han, Chem. Phys. 286, 181 (2003)

    Article  ADS  Google Scholar 

  32. J. Wang, Y. Liu, Y.C. Li, Phys. Lett. A 374, 2736 (2010)

    Article  ADS  Google Scholar 

  33. L. Ma, J.J. Zhao, J.G. Wang, B.L. Wang, Q.L. Lu, G.H. Wang, Phys. Rev. B 73, 125439 (2006)

    Article  ADS  Google Scholar 

  34. S. Mahtout, M.A. Belkhir, Phys. Lett. A 360, 384 (2006)

    Article  ADS  MATH  Google Scholar 

  35. J.C. Yang, W.G. Xu, W.S. Xiao, J. Mol. Struct. Theochem 719, 89 (2005)

    Article  Google Scholar 

  36. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  37. C. Lee, W. Yang, R.G. Parr. Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  38. A.J.H. Wachters, J. Chem. Phys. 52, 1033 (1970)

    Article  ADS  Google Scholar 

  39. P.J. Hay, J. Chem. Phys. 66, 4377 (1977)

    Article  ADS  Google Scholar 

  40. K. Raghavachari, G.W. Trucks, J. Chem. Phys. 91, 1062 (1989)

    Article  ADS  Google Scholar 

  41. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision D. 01 (Gaussian, Inc., Wallingford CT, 2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, G.L., Gao, A.M. et al. The structures and properties of FeSin/FeSi\hbox{$_{\mathsf{n}}^{+}$}+n/FeSi\hbox{$_{\mathsf{n}}^{-}$}−n (n = 1 ~ 8) clusters. Eur. Phys. J. D 64, 27–35 (2011). https://doi.org/10.1140/epjd/e2011-10519-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10519-4

Keywords

Navigation