Skip to main content
Log in

Far-Infrared spectroscopy of isolated transition metal clusters

  • Electronic and Structural Properties
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

The vibrational far-infrared (IR) spectra of isolated metal clusters in the gas phase can be measured by performing photo dissociation spectroscopy of their rare gas complexes. For these experiments an intense and widely tunable source of far-IR radiation is required, and the Free Electron Laser for Infrared eXperiments (FELIX) is ideally suited for this. Vibrational spectra are obtained for vanadium cluster cations as well as for neutral and cationic niobium clusters. The comparison of the experimental vibrational spectra with theoretically calculated spectra allows for the determination of the structure of the metal clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.F. Jarrold, J.E. Bower, J. Chem. Phys. 98, 2399 (1993); A.A. Shvartsburg, M.F. Jarrold, Phys. Rev. A 60, 1235 (1999)

    Google Scholar 

  • P. Weis, T. Bierweiler, S. Gilb, M.M. Kappes, Chem. Phys. Lett. 355, 355 (2002); S. Gilb et al., J. Chem. Phys. 116, 4094 (2002); F. Furche et al., J. Chem. Phys. 117, 6982 (2002); P. Weis, T. Bierweiler, E. Vollmer, M.M. Kappes, J. Chem. Phys. 117, 9293 (2002)

    Google Scholar 

  • G. von Helden, D. van Heijnsbergen, G. Meijer, J. Phys. Chem. A 107, 1671 (2003)

    Google Scholar 

  • D. Oepts, A.F.G. van der Meer, P.W. van Amersfoort, Infrared Phys. Technol. 36, 297 (1995)

    Google Scholar 

  • D. van Heijnsbergen et al., Phys. Chem. Chem. Phys. 5, 2515 (2003)

    Google Scholar 

  • K.R. Asmis et al., Phys. Chem. Chem. Phys. 4, 1101 (2002)

    Google Scholar 

  • M. Brümmer, C. Kaposta, G. Santambrogio, K.R. Asmis, J. Chem. Phys. 119, 12700 (2003); K.R. Asmis et al., J. Chem. Phys. 120, 6461 (2004)

    Google Scholar 

  • A. Fielicke, G. Meijer, G. von Helden, J. Am. Chem. Soc. 125, 3659 (2003); Eur. Phys. J. D 24, 69 (2003)

    Google Scholar 

  • B. Simard et al., Chem. Phys. Lett. 357, 195 (2002); A. Fielicke et al., J. Am. Chem. Soc. 125, 11184 (2003); J. Phys. Chem. B 108, 14591 (2004); T.D. Jaeger et al., Chem. Phys. Lett. 392, 409 (2004)

    Google Scholar 

  • J.R. Lombardi, B. Davis, Chem. Rev. 102, 2431 (2002) and references therein

    Google Scholar 

  • B. Zhao, H. Lu, J. Jules, J.R. Lombardi, Chem. Phys. Lett. 362, 90 (2002)

    Google Scholar 

  • A. Kornath, R. Ludwig, A. Zoermer, Angew. Chem., Int. Ed. 37, 1575 (1998); A. Kornath, A. Zoermer, R. Ludwig, Inorg. Chem. 38, 4696 (1999); Inorg. Chem. 41, 6206 (2002); A. Kornath et al., J. Chem. Phys. 118, 6957 (2203)

    Google Scholar 

  • M.F. Jarrold, K.M. Creegan, Chem. Phys. Lett. 166, 116 (1990)

    Google Scholar 

  • K.J. Taylor et al., J. Chem. Phys. 93, 7515 (1990)

    Google Scholar 

  • G.A. Bishea, M.D. Morse, J. Chem. Phys. 95, 8779 (1991)

    Google Scholar 

  • G.F. Gantefor, D.M. Cox, A. Kaldor, J. Chem. Phys. 96, 4102 (1992); H. Handschuh, G. Ganteför, W. Eberhardt, Rev. Sci. Instrum. 66, 3838 (1995)

    Google Scholar 

  • D.S. Yang, A.M. James, D.M. Rayner, P.A. Hackett, Chem. Phys. Lett. 231, 177 (1994)

    Google Scholar 

  • T.P. Marcy, D.G. Leopold, Int. J. Mass Spectrom. 196, 653 (2000)

    Google Scholar 

  • A. Fielicke et al., Phys. Rev. Lett. 93, 023401 (2004)

    Google Scholar 

  • C. Ratsch, A. Fielicke, A. Kirilyuk, J. Behler, G. von Helden, G. Meijer, M. Scheffler, J. Chem. Phys. 122, 124302 (2005)

    Google Scholar 

  • M.B. Knickelbein, W.J.C. Menezes, Phys. Rev. Lett. 69, 1046 (1992); W.J.C. Menezes, M.B. Knickelbein, J. Chem. Phys. 98, 1856 (1993); M.B. Knickelbein, J. Chem. Phys. 99, 2377 (1993); J. Chem. Phys. 100, 4729 (1994)

    Google Scholar 

  • B.A. Collings, K. Athanassenas, D.M. Rayner, P.A. Hackett, Z. Phys. D 26, 36 (1993); Chem. Phys. Lett. 227, 490 (1994); B.A. Collings et al., J. Chem. Phys. 101, 3506 (1994)

    Google Scholar 

  • S. Minemoto, A. Terasaki, T. Kondow, J. Chem. Phys. 104, 5770 (1996); S. Minemoto, A. Terasaki, H. Imoto, T. Kondow, J. Chem. Phys. 109, 9737 (1998); S. Minemoto, A. Terasaki, and T. Kondow, J. Electron Spectrosc. Rel. Phen. 106, 171 (2000)

    Google Scholar 

  • J.M. Antonietti, A. Châtelain, S. Fedrigo, J. Chem. Phys. 114, 2981 (2001)

    Google Scholar 

  • A. Schweizer et al., J. Chem. Phys. 119, 3699 (2003)

    Google Scholar 

  • A. Fielicke, G. Meijer, G. von Helden, J. Am. Chem. Soc. 125, 3659 (2003)

    Google Scholar 

  • L.W. Bruch, M.W. Cole, E. Zaremba, Physical Adsorption: Forces and Phenomena (Clarendon Press, Oxford, 1997), p. 229

  • J. Oomens et al., Astrophys. J. 591, 968 (2003)

    Google Scholar 

  • L. Goodwin, D.R. Salahub, Phys. Rev. A 47, R774 (1993); H. Grönbeck, A. Rosén, Phys. Rev. B 54, 1549 (1996); J. Chem. Phys. 107, 10620 (1997); X. Wu, A.K. Ray, J. Chem. Phys. 110, 2437 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Fielicke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fielicke, A., von Helden, G. & Meijer, G. Far-Infrared spectroscopy of isolated transition metal clusters. Eur. Phys. J. D 34, 83–88 (2005). https://doi.org/10.1140/epjd/e2005-00124-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00124-7

Keywords

Navigation