Skip to main content
Log in

Towards an asymptotic-safety scenario for chiral Yukawa systems

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We search for asymptotic safety in a Yukawa system with a chiral U(N L)L U(1)R symmetry, serving as a toy model for the standard-model Higgs sector. Using the functional RG as a nonperturbative tool, the leading-order derivative expansion exhibits admissible non-Gaußian fixed points for 1≤N L≤57 which arise from a conformal threshold behavior induced by self-balanced boson-fermion fluctuations. If present in the full theory, the fixed point would solve the triviality problem. Moreover, as one fixed point has only one relevant direction even with a reduced hierarchy problem, the Higgs mass as well as the top mass are a prediction of the theory in terms of the Higgs vacuum expectation value. In our toy model, the fixed point is destabilized at higher order due to massless Goldstone and fermion fluctuations, which are particular to our model and have no analogue in the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, J.B. Kogut, Phys. Rep. 12, 75 (1974)

    Article  ADS  Google Scholar 

  2. M. Luscher, P. Weisz, Nucl. Phys. B 295, 65 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Luscher, P. Weisz, Nucl. Phys. B 318, 705 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Hasenfratz, K. Jansen, C.B. Lang, T. Neuhaus, H. Yoneyama, Phys. Lett. B 199, 531 (1987)

    Article  ADS  Google Scholar 

  5. U.M. Heller, H. Neuberger, P.M. Vranas, Nucl. Phys. B 399, 271 (1993). arXiv:hep-lat/9207024

    Article  ADS  Google Scholar 

  6. D.J.E. Callaway, Phys. Rep. 167, 241 (1988)

    Article  ADS  Google Scholar 

  7. O.J. Rosten. arXiv:0808.0082 [hep-th]

  8. J. Smit, Nucl. Phys. Proc. Suppl. 17, 3 (1990)

    Article  ADS  Google Scholar 

  9. J. Shigemitsu, Nucl. Phys. Proc. Suppl. 20, 515 (1991)

    Article  ADS  Google Scholar 

  10. K. Jansen, Phys. Rep. 273, 1 (1996). arXiv:hep-lat/9410018

    Article  MathSciNet  Google Scholar 

  11. I.H. Lee, J. Shigemitsu, R.E. Shrock, Nucl. Phys. B 334, 265 (1990)

    Article  ADS  Google Scholar 

  12. I.H. Lee, J. Shigemitsu, R.E. Shrock, Nucl. Phys. B 330, 225 (1990)

    Article  ADS  Google Scholar 

  13. R.E. Shrock, in Quantum Fields on the Computer, ed. by M. Creutz, et al. (World Scientific, Singapore, 1992), pp. 150–210

    Google Scholar 

  14. J. Kuti, L. Lin, Y. Shen, Phys. Rev. Lett. 61, 678 (1988)

    Article  ADS  Google Scholar 

  15. Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, PoS LAT2007, 056 (2007). arXiv:0710.3151 [hep-lat]

    Google Scholar 

  16. P. Gerhold, K. Jansen, J. Kallarackal, arXiv:0810.4447 [hep-lat]

  17. P. Gerhold, K. Jansen, J. High Energy Phys. 0710, 001 (2007). arXiv:0707.3849 [hep-lat]

    Article  ADS  Google Scholar 

  18. P. Gerhold, K. Jansen, J. High Energy Phys. 0709, 041 (2007). arXiv:0705.2539 [hep-lat]

    Article  ADS  Google Scholar 

  19. K. Jansen, J. Kuti, C. Liu, Phys. Lett. B 309, 119 (1993). arXiv:hep-lat/9305003

    Article  ADS  Google Scholar 

  20. K. Jansen, J. Kuti, C. Liu, Phys. Lett. B 309, 127 (1993). arXiv:hep-lat/9305004

    Article  ADS  Google Scholar 

  21. S. Weinberg, in C76-07-23.1 HUTP-76/160, Erice Subnucl. Phys., 1 (1976)

  22. R. Percacci, arXiv:0709.3851 [hep-th]

  23. S. Weinberg, arXiv:0903.0568 [hep-th]

  24. B. Rosenstein, B.J. Warr, S.H. Park, Phys. Rev. Lett. 62, 1433 (1989)

    Article  ADS  Google Scholar 

  25. K. Gawedzki, A. Kupiainen, Phys. Rev. Lett. 55, 363 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  26. C. de Calan, P.A. Faria da Veiga, J. Magnen, R. Seneor, Phys. Rev. Lett. 66, 3233 (1991)

    Article  ADS  Google Scholar 

  27. H. Gies, J. Jaeckel, C. Wetterich, Phys. Rev. D 69, 105008 (2004). arXiv:hep-ph/0312034

    Article  ADS  Google Scholar 

  28. J.M. Schwindt, C. Wetterich, arXiv:0812.4223 [hep-th]

  29. H. Gies, M.M. Scherer, arXiv:0901.2459 [hep-th]

  30. A. Codello, R. Percacci, arXiv:0810.0715 [hep-th]

  31. H. Gies, Phys. Rev. D 68, 085015 (2003). arXiv:hep-th/0305208

    Article  ADS  Google Scholar 

  32. M. Reuter, Phys. Rev. D 57, 971 (1998). arXiv:hep-th/9605030

    Article  MathSciNet  ADS  Google Scholar 

  33. O. Lauscher, M. Reuter, Phys. Rev. D 65, 025013 (2002). arXiv:hep-th/0108040

    Article  MathSciNet  ADS  Google Scholar 

  34. O. Lauscher, M. Reuter, Class. Quantum Gravity 19, 483 (2002). arXiv:hep-th/0110021

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. W. Souma, Prog. Theor. Phys. 102, 181 (1999). arXiv:hep-th/9907027

    Article  MathSciNet  ADS  Google Scholar 

  36. P. Forgacs, M. Niedermaier, arXiv:hep-th/0207028

  37. R. Percacci, D. Perini, Phys. Rev. D 67, 081503 (2003). arXiv:hep-th/0207033

    Article  ADS  Google Scholar 

  38. A. Codello, R. Percacci, C. Rahmede, Int. J. Mod. Phys. A 23, 143 (2008). arXiv:0705.1769 [hep-th]

    Article  ADS  Google Scholar 

  39. D. Benedetti, P.F. Machado, F. Saueressig, arXiv:0901.2984 [hep-th]

  40. D. Benedetti, P.F. Machado, F. Saueressig, arXiv:0902.4630 [hep-th]

  41. R. Percacci, D. Perini, Phys. Rev. D 68, 044018 (2003). arXiv:hep-th/0304222

    Article  ADS  Google Scholar 

  42. S. Bornholdt, C. Wetterich, Phys. Lett. B 282(3–4), 399 (1992)

    ADS  Google Scholar 

  43. O. Zanusso, L. Zambelli, G.P. Vacca, R. Percacci, arXiv:0904.0938 [hep-th]

  44. C. Wetterich, Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  45. K. Aoki, Int. J. Mod. Phys. B 14, 1249 (2000)

    MathSciNet  ADS  Google Scholar 

  46. J. Berges, N. Tetradis, C. Wetterich, Phys. Rep. 363, 223 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  47. D.F. Litim, J.M. Pawlowski, in The Exact Renormalization Group, ed. by Krasnitz, et al. (World Scientific, Singapore, 1999), pp. 168

    Google Scholar 

  48. J. Polonyi, Cent. Eur. J. Phys. 1, 1 (2004)

    Article  Google Scholar 

  49. J.M. Pawlowski, Ann. Phys. 322, 2831 (2007). arXiv:hep-th/0512261

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. H. Gies, arXiv:hep-ph/0611146

  51. B. Delamotte, arXiv:cond-mat/0702365

  52. D.F. Litim, Phys. Lett. B 486, 92 (2000). hep-th/0005245

    Article  ADS  Google Scholar 

  53. D.F. Litim, Phys. Rev. D 64, 105007 (2001). hep-th/0103195

    Article  ADS  Google Scholar 

  54. D.U. Jungnickel, C. Wetterich, Phys. Rev. D 53, 5142 (1996). arXiv:hep-ph/9505267

    Article  ADS  Google Scholar 

  55. B.J. Schaefer, H.J. Pirner, Nucl. Phys. A 660, 439 (1999). arXiv:nucl-th/9903003

    Article  ADS  Google Scholar 

  56. H. Gies, C. Wetterich, Phys. Rev. D 65, 065001 (2002). arXiv:hep-th/0107221

    Article  MathSciNet  ADS  Google Scholar 

  57. H. Gies, C. Wetterich, Phys. Rev. D 69, 025001 (2004). arXiv:hep-th/0209183

    Article  ADS  Google Scholar 

  58. J. Braun, arXiv:0810.1727 [hep-ph]

  59. L. Rosa, P. Vitale, C. Wetterich, Phys. Rev. Lett. 86, 958 (2001). arXiv:hep-th/0007093

    Article  ADS  Google Scholar 

  60. F. Hofling, C. Nowak, C. Wetterich, Phys. Rev. B 66, 205111 (2002). arXiv:cond-mat/0203588

    Article  ADS  Google Scholar 

  61. P. Strack, R. Gersch, W. Metzner, Phys. Rev. B 87, 014522 (2008). arXiv:0804.3994

    Article  ADS  Google Scholar 

  62. P. Strack, S. Takei, W. Metzner, arXiv:0905.3894

  63. M.C. Birse, B. Krippa, J.A. McGovern, N.R. Walet, Phys. Lett. B 605, 287 (2005). arXiv:hep-ph/0406249

    Article  ADS  Google Scholar 

  64. S. Diehl, H. Gies, J.M. Pawlowski, C. Wetterich, Phys. Rev. A 76, 053627 (2007). arXiv:cond-mat/0703366

    Article  ADS  Google Scholar 

  65. S. Diehl, H. Gies, J.M. Pawlowski, C. Wetterich, Phys. Rev. A 76, 21602 (2007). arXiv:cond-mat/0701198; Rap. Comm.

    Article  ADS  Google Scholar 

  66. S. Floerchinger, M. Scherer, S. Diehl, C. Wetterich, arXiv:0808.0150 [cond-mat.supr-con]

  67. F. Lamprecht, F. Marhauser, J.M. Pawlowski, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Scherer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gies, H., Rechenberger, S. & Scherer, M.M. Towards an asymptotic-safety scenario for chiral Yukawa systems. Eur. Phys. J. C 66, 403–418 (2010). https://doi.org/10.1140/epjc/s10052-010-1257-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1257-y

Keywords

Navigation