Skip to main content
Log in

Field on Poincaré Group and Quantum Description of Orientable Objects

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner’s ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincaré group G. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group Π=G×G. All such transformations can be studied by considering a generalized regular representation of G in the space of scalar functions on the group, f(x,z), that depend on the Minkowski space points xG/Spin(3,1) as well as on the orientation variables given by the elements z of a matrix Z∈Spin(3,1). In particular, the field f(x,z) is a generating function of the usual spin-tensor multi-component fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.S. Biedenharn, J.D. Louck, Angular Momentum in Quantum Physics (Addison–Wesley, Reading, 1981)

    MATH  Google Scholar 

  2. V.L. Ginzburg, I.E. Tamm, On the theory of spin. Zh. Eksp. Teor. Fiz. 17, 227–237 (1947)

    Google Scholar 

  3. V. Bargmann, E.P. Wigner, Group theoretical discussion of relativistic wave equations. Proc. Natl. Acad. U.S.A. 34, 211–223 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. H. Yukawa, Quantum theory of non-local fields. I. Free fields. Phys. Rev. 77(2), 219–226 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Yu.M. Shirokov, Relativistic theory of spin. Zh. Eksp. Teor. Fiz. 21(6), 748–760 (1951)

    Google Scholar 

  6. D. Finkelstein, Internal structure of spinning particles. Phys. Rev. 100(3), 924–931 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. F. Lurçat, Quantum field theory and the dynamical role of spin. Physics 1, 95 (1964)

    Google Scholar 

  8. H. Bacry, A. Kihlberg, Wavefunctions on homogeneous spaces. J. Math. Phys. 10(12), 2132–2141 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Kihlberg, Fields on a homogeneous space of the Poincaré group. Ann. Inst. Henri Poincaré 13(1), 57–76 (1970)

    MathSciNet  Google Scholar 

  10. C.P. Boyer, G.N. Fleming, Quantum field theory on a seven-dimensional homogeneous space of the Poincaré group. J. Math. Phys. 15(7), 1007–1024 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Arodź, Metric tensors, Lagrangian formalism and Abelian gauge field on the Poincaré group. Acta Phys. Pol., Ser. B 7(3), 177–190 (1976)

    Google Scholar 

  12. M. Toller, Classical field theory in the space of reference frames. Nuovo Cimento B 44(1), 67–98 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Toller, Free quantum fields on the Poincaré group. J. Math. Phys. 37(6), 2694–2730 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. W. Drechsler, Geometro-stohastically quantized fields with internal spin variables. J. Math. Phys. 38(11), 5531–5558 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. L. Hannibal, Relativisyic spin on the Poincaré group. Found. Phys. 27(1), 43–56 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.M. Gitman, A.L. Shelepin, Fields on the Poincaré group: Arbitrary spin description and relativistic wave equations. Int. J. Theor. Phys. 40, 603–684 (2001). arXiv:hep-th/0003146

    Article  MathSciNet  MATH  Google Scholar 

  17. I.L. Buchbinder, D.M. Gitman, A.L. Shelepin, Discrete symmetries as automorphisms of the proper Poincaré group. Int. J. Theor. Phys. 41(4), 753–790 (2002). arXiv:hep-th/0010035

    Article  MathSciNet  MATH  Google Scholar 

  18. S.P. Gavrilov, D.M. Gitman, Quantization of point-like particles and consistent relativistic quantum mechanics. Int. J. Mod. Phys. A 15, 4499–4538 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  19. S.P. Gavrilov, D.M. Gitman, Quantization of the relativistic particle. Class. Quantum Gravity 17(19), L133–L139 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. S.P. Gavrilov, D.M. Gitman, Quantization of a spinning particle in an arbitrary background. Class. Quantum Gravity 18, 2989–2998 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. R.N. Zare, Angular Momentum. Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988)

    Google Scholar 

  22. R. Penrose, Structure of Space-Time (Benjamin, New York, 1968)

    Google Scholar 

  23. R. Penrose, M.A.H. MacCallum, Twistor theory: approach to the quantization of fields and space-time. Phys. Rep. 6(4), 241–316 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  24. R.O. Wells, Complex manifolds and mathematical physics. Bull. Am. Math. Soc. 1(2), 296–336 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. N.Ya. Vilenkin, Special Functions and the Theory of Group Representations (AMS, Providence, 1968)

    MATH  Google Scholar 

  26. A.O. Barut, R. Raczka, Theory of Group Representations and Applications (PWN, Warszawa, 1977)

    Google Scholar 

  27. I.M. Benn, R.W. Tucker, An Introduction to Spinors and Geometry with Applications in Physics (Adam Hilger, Bristol, 1988)

    Google Scholar 

  28. N.J. Vilenkin, A.U. Klimyk, Representations of Lie Groups and Special Functions, vol. 1 (Kluwer Academic, Dordrecht, 1991)

    Google Scholar 

  29. D.P. Zhelobenko, A.I. Schtern, Representations of Lie Groups (Nauka, Moscow, 1983)

    MATH  Google Scholar 

  30. G. Rideau, On the reduction of the regular representation of the Poincaré group. Commun. Math. Phys. 3, 218–227 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. N.X. Hai, Harmonic analysis on the Poincaré group, I. Generalized matrix elements. Commun. Math. Phys. 12, 331–350 (1969)

    Article  ADS  MATH  Google Scholar 

  32. N.X. Hai, Harmonic analysis on the Poincaré group, II. The Fourier transform. Commun. Math. Phys. 22, 301–320 (1971)

    Article  ADS  MATH  Google Scholar 

  33. V.V. Varlamov, Towards the quantum electrodynamics on the Poincaré group. arXiv:hep-th/0403070

  34. V.V. Varlamov, General solutions of relativistic wave equations II: Arbitrary spin chains. Int. J. Theor. Phys. 46, 741–805 (2007) arXiv:math-ph/0503058

    Article  MathSciNet  MATH  Google Scholar 

  35. D.M. Gitman, A.L. Shelepin, Poincaré group and relativistic wave equations in 2+1 dimensions. J. Phys. A 30, 6093–6121 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  36. I.M. Gel’fand, M.I. Graev, N.Ya. Vilenkin, Generalized Functions, vol. 5 (Academic Press, New York, 1966)

    MATH  Google Scholar 

  37. W.I. Fushchich, A.G. Nikitin, Symmetry of equations of quantum mechanics (Allerton Press, New York, 1994)

    Google Scholar 

  38. H. Umezava, S. Kamefuchi, S. Tanaka, On the time reversal in the quantized field theory. Prog. Theor. Phys. 12(3), 383–400 (1954)

    Article  ADS  Google Scholar 

  39. N. Kemmer, J.C. Polkinghorn, D.L. Pursey, Invariance in elementary particle physics. Rep. Progr. Phys. 22, 368–432 (1959)

    Article  ADS  Google Scholar 

  40. J. Schwinger, The theory of quantized fields. I. Phys. Rev. 82(6), 914–927 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. E.M. Lifshitz, V.B. Berestetskii, L.P. Pitaevskii, Quantum Electrodynamics (Pergamon, Oxford, 1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Gitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gitman, D.M., Shelepin, A.L. Field on Poincaré Group and Quantum Description of Orientable Objects. Eur. Phys. J. C 61, 111–139 (2009). https://doi.org/10.1140/epjc/s10052-009-0954-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0954-x

Keywords

Navigation