Skip to main content
Log in

Fermion tunneling from anti-de Sitter spaces

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Kerner and Mann’s recent research on the Hawking radiation of the spherically symmetric uncharged black hole shows that the Hawking temperature can be obtained by the fermion tunneling method. In this paper, we extend this work to the general case and view the Hawking radiations of the Reissner–Nordström black hole, Kerr black hole and Kerr–Newman black hole in anti-de Sitter spaces. The Hawking temperatures are recovered and are exactly the same as that obtained by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Hawking, Nature 30, 248 (1974)

    Google Scholar 

  2. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Damour, R. Ruffini, Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  4. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2752 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  5. G.W. Gibbons, M.J. Perry, C.N. Pope, hep-th/0408217

  6. S. Sannan, Gen. Relat. Grav. 20, 239 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.M. Bardeen, B. Carter, S.W. Hawking, Math. Phys. 31, 161 (1973)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. S.Q. Wu, Phys. Lett. B 608, 251 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.L. Jing, Chin. Phys. 10, 234 (2001)

    Article  ADS  Google Scholar 

  10. P. Kraus, F. Wilczek, Mod. Phys. Lett. A 9, 3713 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. P. Kraus, F. Wilczek, Nucl. Phys. B 433, 403 (1995)

    Article  ADS  Google Scholar 

  12. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5024 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.K. Parikh, Phys. Lett. B 546, 189 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. M.K. Parikh, Int. J. Mod. Phys. D 13, 2351 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Hemming, E. Keski-Vakkuri, Phys. Rev. D 64, 044006 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.J.M. Medved, Phys. Rev. D 66, 124009 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. E.C. Vagenas, Phys. Lett. B 533, 302 (2002)

    Article  MATH  ADS  Google Scholar 

  18. M. Arzano, A.J.M. Medved, E.C. Vagenas, JHEP 0509, 037 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.J.M. Medved, E.C. Vagenas, Mod. Phys. Lett. A 20, 1723 (2005)

    Article  MATH  ADS  Google Scholar 

  20. J.Y. Zhang, Z. Zhao, Nucl. Phys. B 725, 173 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. J.Y. Zhang, Z. Zhao, JHEP 0510, 055 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. S.Z. Yang, Chin. Phys. Lett. 22, 2492 (2005)

    Article  ADS  Google Scholar 

  23. S. Christensen, S. Fulling, Phys. Rev. D 15, 2088 (1977)

    Article  ADS  Google Scholar 

  24. S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95, 011303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96, 151302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. D 74, 044017 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. K. Murata, J. Soda, Phys. Rev. D 74, 044018 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. Q.Q. Jiang, S.Q. Wu, X. Cai, Phys. Rev. D 75, 064029 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. R. Banerjee, S. Kulkarni, 0707.2449 [hep-th]

  30. E. Vagenas, S. Das, JHEP 0610, 025 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. M.R. Setare, Eur. Phys. J. C 49, 865 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Kerner, R.B. Mann, 0710.0612 [hep-th]

  33. B. Wang, C.Y. Lin, E. Abdalla, hep-th/0003295

  34. B. Carter, Commun. Math. Phys. 10, 280 (1968)

    MATH  Google Scholar 

  35. Q.Q. Jiang, S.Q. Wu, hep-th/0701002

  36. J.F. Plebanski, Ann. Phys. 98, 98 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. R. Di Criscienzo, 0803.0435 [hep-th]

  38. R. Li, J.R. Ren, 0803.1410 [hep-th]

  39. R. Kerner, R.B. Mann, 0803.2246 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyou Chen.

Additional information

PACS

04.70.Dy; 04.62.+v; 11.30.-j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Yang, H. & Zu, X. Fermion tunneling from anti-de Sitter spaces. Eur. Phys. J. C 56, 119–124 (2008). https://doi.org/10.1140/epjc/s10052-008-0638-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0638-y

Keywords

Navigation