Skip to main content
Log in

The origins of multifractality in financial time series and the effect of extreme events

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper presents the results of multifractal testing of two sets of financial data: daily data of the Dow Jones Industrial Average (DJIA) index and minutely data of the Euro Stoxx 50 index. Where multifractal scaling is found, the spectrum of scaling exponents is calculated via Multifractal Detrended Fluctuation Analysis. In both cases, further investigations reveal that the temporal correlations in the data are a more significant source of the multifractal scaling than are the distributions of the returns. It is also shown that the extreme events which make up the heavy tails of the distribution of the Euro Stoxx 50 log returns distort the scaling in the data set. The most extreme events are inimical to the scaling regime. This result is in contrast to previous findings that extreme events contribute to multifractality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Grassberger, Phys. Lett. A 97, 227 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. T.C. Halsey, P. Meakin, I. Procaccia, Phys. Rev. Lett. 56, 854 (1986)

    Article  ADS  Google Scholar 

  4. W.G. Hanan, D.M. Heffernan, Phys. Rev. E 85, 021407 (2012)

    Article  ADS  Google Scholar 

  5. W.G. Hanan, D.M. Heffernan, Phys. Rev. E 77, 011405 (2008)

    Article  ADS  Google Scholar 

  6. H.E. Stanley, P. Meakin, Nature 335, 405 (1988)

    Article  ADS  Google Scholar 

  7. A. Cummings, G. O’Sullivan, W.G. Hanan, D.M. Heffernan, J. Phys. B 34, 2547 (2001)

    Article  ADS  Google Scholar 

  8. W.G. Hanan, D.M. Heffernan, J.C. Earnshaw, Chaos Solitons Fractals 9, 875 (1998)

    Article  ADS  MATH  Google Scholar 

  9. B.B. Mandelbrot, J. Fluid Mech. 62, 331 (1974)

    Article  ADS  MATH  Google Scholar 

  10. P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, H. Stanley, Nature 399, 461 (1999)

    Article  ADS  Google Scholar 

  11. Y. Zheng, J. Gao, J.C. Sanchez, J.C. Principe, M.S. Okun, Phys. Lett. A 344, 253 (2005)

    Article  ADS  MATH  Google Scholar 

  12. E.A. Ihlen, Front. Physio. 3, 141 (2012)

    Article  ADS  Google Scholar 

  13. A. Feldmann, A.C. Gilbert, W. Willinger, SIGCOMM Comput. Commun. Rev. 28, 42 (1998)

    Article  Google Scholar 

  14. N. Sala, in Thinking in Patterns: Fractals and Related Phenomena in Nature, edited by M.M. Novak (World Scientific, Singapore, 2004)

  15. B.B. Mandelbrot, R. Hudson, On the (mis) Behaviour of Markets, a Fractal View of Risk, Ruin and Reward (Profile Books, London, 2005)

  16. Ł. Czarnecki, D. Grech, Acta Physica Polonica A 117, 623 (2010)

    Google Scholar 

  17. A. Turiel, C.J. Pérez-Vicente, Physica A 322, 629 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. R. Cont, Quant. Finance 1, 223 (2001)

    Article  Google Scholar 

  19. B.B. Mandelbrot, in Thinking in Patterns: Fractals and Related Phenomena in Nature, edited by M.M. Novak (World Scientific, Singapore, 2004)

  20. W.X. Zhou, Europhys. Lett. 88, 28004 (2009)

    Article  ADS  Google Scholar 

  21. V. Romanov, V. Slepov, M. Badrina, A. Federyakov, in Computational Finance and Its Applications III, edited by M. Constantino, M. Larran, C.A. Brebbia (WIT Press, 2008), pp. 13–22

  22. K. Matia, Y. Ashkenazy, H.E. Stanley, Europhys. Lett. 61, 422 (2003)

    Article  ADS  Google Scholar 

  23. P. Suárez-García, D. Gómez-Ullate, Physica A 394, 226 (2014)

    Article  ADS  Google Scholar 

  24. B.B. Mandelbrot, A.J. Fisher, L.E. Calvet, A Multifractal Model of Asset Returns (Cowles Foundation, 1997)

  25. R.F. Engle, Econometrica 50, 987 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  26. J.W. Kantelhardt, S.A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanley, Physica A 316, 87 (2002)

    Article  ADS  MATH  Google Scholar 

  27. J.-F. Muzy, E. Bacry, A. Arneodo, Int. J. Bifurc. Chaos 4, 245 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. J.-F. Muzy, E. Bacry, A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991)

    Article  ADS  Google Scholar 

  29. P. Oświȩcimka, J. Kwapień, S. Drożdż, Phys. Rev. E 74, 016103 (2006)

    Article  Google Scholar 

  30. P. Oświȩcimka, J. Kwapień, S. Drożdż, R. Rak, Acta Physica Polonica B 36, 2447 (2005)

    ADS  Google Scholar 

  31. A.Y. Schumann, J.W. Kantelhardt, Physica A 390, 2637 (2011)

    Article  ADS  Google Scholar 

  32. Z. Yu, L. Yee, Y. Zu-Guo, Chin. Phys. B 20, 090507 (2011)

    Article  Google Scholar 

  33. P. Jizba, J. Korbel, Methods and techniques for multifractal spectrum estimation in financial time series, in Proceedings ASMDA, 2013

  34. T. Lux, Int. J. Mod. Phys. C 15, 481 (2004)

    Article  ADS  Google Scholar 

  35. W.X. Zhou, Chaos Solitons Fractals 45, 147 (2012)

    Article  ADS  MATH  Google Scholar 

  36. J.-P. Bouchaud, M. Potters, M. Meyer, Eur. Phys. J. B 13, 595 (2000)

    ADS  Google Scholar 

  37. J. Gierałtowski, J.J. Żebrowski, R. Baranowski, Phys. Rev. E 85, 021915 (2012)

    Article  ADS  Google Scholar 

  38. J.R. Thompson, Analysis of Market Returns Using Multifractal Time Series and Agent-Based Simulation, Ph.D. thesis, Raleigh, 2013

  39. M. Segnon, T. Lux, Multifractal models in finance: Their origin, properties, and applications, Technical report, Kiel Working Paper, 2013

  40. W.S. Kendal, Physica A 401, 22 (2014)

    Article  ADS  Google Scholar 

  41. W.S. Kendal, B. Jørgensen, Phys. Rev. E 84, 066120 (2011)

    Article  ADS  Google Scholar 

  42. J. Barunik, T. Aste, T. Di Matteo, R. Liu, Physica A 391, 4234 (2012)

    Article  ADS  Google Scholar 

  43. S. Kumar, N. Deo, Physica A 388, 1593 (2009)

    Article  ADS  Google Scholar 

  44. G. Oh, C. Eom, S. Havlin, W.S. Jung, F. Wang, H.E. Stanley, S. Kim, Eur. Phys. J. B 85, 214 (2012)

    Article  ADS  Google Scholar 

  45. J. Kwapień et al., Physica A 350, 466 (2005)

    Article  ADS  Google Scholar 

  46. Y. Wang, C. Wu, Z. Pan, Physica A 390, 3512 (2011)

    Article  ADS  Google Scholar 

  47. D. Sornette, Phys. Rep. 378, 1 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. V.S. L’vov, A. Pomyalov, I. Procaccia, Phys. Rev. E 63, 056118 (2001)

    Article  ADS  Google Scholar 

  49. D. Sornette, Int. J. Terraspace Sci. Eng. 2, 1 (2009)

    Google Scholar 

  50. S. Benbachir, M. El Alaoui, Int. Res. J. Finance Econ. 78, 6 (2011)

    Google Scholar 

  51. P. Norouzzadeh, B. Rahmani, Physica A 367, 328 (2006)

    Article  ADS  Google Scholar 

  52. H. Chen, C. Wu, Physica A 390, 2926 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Green.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, E., Hanan, W. & Heffernan, D. The origins of multifractality in financial time series and the effect of extreme events. Eur. Phys. J. B 87, 129 (2014). https://doi.org/10.1140/epjb/e2014-50064-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50064-x

Keywords

Navigation