Skip to main content
Log in

Electronic structure of ZnO wurtzite quantum wires

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The electronic structure and optical properties of ZnO wurtzite quantum wires with radius R≥3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark exciton effect when the radius R of the ZnO quantum wires is in the range of [3,19.1] nm (dark range in our model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison. The dark range becomes smaller when the |Δso| is larger, which also happens in the quantum-dot systems. The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Zhiren Qiu, K.S. Wong, Mingmei Wu, Wenjiao Lin, Huifang Xu, Appl. Phys. Lett. 84, 2739 (2004)

    Article  Google Scholar 

  • Li Cao, Bingsuo Zou, Chaorong Li, Zebo Zhang, Sishen Xie, Guozhen Yang, Europhys. Lett. 68, 740 (2004)

    Article  ADS  Google Scholar 

  • Xiangfeng Duan, Yu Huang, Ritesh Agarwal, C.M. Lieber, Nature 421, 241 (2003)

    Article  ADS  Google Scholar 

  • P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Adv. Funct. Mater. 12, 323 (2002)

    Article  ADS  Google Scholar 

  • C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater. (Weinheim, Ger.) 15, 838 (2003)

    Google Scholar 

  • Biswajit Das, Pavan Singaraju, Infrared Physics and Technology 46, 209 (2005)

    Article  ADS  Google Scholar 

  • H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. (Weinheim, Ger.) 14, 158 (2002)

    Google Scholar 

  • K. Keem, H. Kim, G.-T. Kim, J.S. Lee, B. Min, K. Cho, M.-Y. Sung, S. Kim, Appl. Phys. Lett. 84, 4376 (2004)

    Article  ADS  Google Scholar 

  • Xuan Wang, Qingwen Li, Zhibo Liu, Jin Zhang, Zhongfan Liu, Rongming Wang, Appl. Phys. Lett. 84, 4941 (2004)

    Article  ADS  Google Scholar 

  • J. Wrzesinski, D. Frohlich, Phys. Rev. B 56, 13087 (1997)

    Article  ADS  Google Scholar 

  • Xiaochen Sun, Hongzhou Zhang, Jun Xu, Qing Zhao, Rongming Wang, Dapeng Yu, Solid State Communications 129, 803 (2004)

    Article  Google Scholar 

  • Ye Zhang, Hongbo Jia, Rongming Wang, Chinping Chen, Xuhui Luo, Dapeng Yu, Cheoljin Lee, Appl. Phys. Lett. 83, 4631 (2003)

    Article  ADS  Google Scholar 

  • Q.X. Zhao, M. Willander, R.E. Morjan, Q.-H. Hu, E.E.B. Campbell, Appl. Phys. Lett. 83, 165 (2003)

    Article  Google Scholar 

  • H.J. Fan, F. Fleischer, W. Lee, K. Nielsch, R. Scholz, M. Zacharias, U. Gosele, A. Dadgar, A. Krost, Superlattices and Microstructures 36, 95 (2004)

    Article  ADS  Google Scholar 

  • Chuanbin Mao, D.J. Solis, B.D. Reiss, S.T. Kottmann, R.Y. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, A.M. Belcher, Science 303, 213 (2004)

    Article  ADS  Google Scholar 

  • S. Banerjee, A. Dan, D. Chakravorty, J. Materials Science 37, 4261 (2002)

    Article  Google Scholar 

  • Matt Law, Joshua Goldberger, Peidong Yang, Annu. Rev. Mater. Res. 34, 83 (2004)

    Article  Google Scholar 

  • H. Priller, R. Hauschild, J. Zeller, C. Klingshirn, H. Kalt, R. Kling, F. Reuss, Ch. Kirchner, A. Waag, J. Lumin. 112, 173 (2005)

    Article  Google Scholar 

  • S. Ozaki, T. Tsuchiya, Y. Inokuchi, S. Adachi, Phys. Stat. Sol. A 202, 1325 (2005)

    Article  ADS  Google Scholar 

  • Ilan Shalish, Henryk Temkin, Venkatesh Narayanamurti, Phys. Rev. B 69, 245401 (2004)

    Article  ADS  Google Scholar 

  • Jianfang Wang, M.S. Gudiksen, Xiangfeng Duan, Yi Cui, C.M. Lieber, Science 293, 1455 (2001)

    Article  ADS  Google Scholar 

  • H.E. Ruda, A. Shik, Phys. Rev. B 72, 115308 (2005)

    Article  ADS  Google Scholar 

  • C.R. McIntyre, L.J. Sham, Phys. Rev. B 45, 9443 (1992)

    Article  ADS  Google Scholar 

  • Xin-Zheng Li, Jian-Bai Xia, Phys. Rev. B 66, 115316 (2002)

    Article  ADS  Google Scholar 

  • S.F. Chichibu, T. Sota, G. Cantwell, E.D.B. Ason, C.W. Litton, J. Appl. Phys. 93, 756 (2003)

    Article  ADS  Google Scholar 

  • J.B. Xia, J. Lumin. 70, 120 (1996)

    Article  Google Scholar 

  • S. Bloom, I. Ortenburger, Phys. Stat. Sol. B 58, 561 (1973)

    Google Scholar 

  • J.R. Chelikowsky, Solid State Commun. 22, 351 (1977)

    Article  Google Scholar 

  • M. Schlűter, J.R. Chelikowsky, S.G. Louie, M.L. Cohen, Phys. Rev. B 12, 4200 (1975)

    Article  ADS  Google Scholar 

  • Jian-Bai Xia, K.W. Cheah, Xiao-Liang Wang, Dian-Zhao Sun, Mei-Ying Kong, Phys. Rev. B 59, 10119 (1999)

    Article  ADS  Google Scholar 

  • Landolt-Bőrnstein, Group III, 41 B

  • A. Mang, K. Reimann, S. Rübenacke, Solid State Commun. 94, 251 (1995)

    Article  Google Scholar 

  • Jian-Bai Xia, Jingbo Li, Phys. Rev. B 60, 11540 (1999)

    Article  ADS  Google Scholar 

  • Jingbo Li, Jian-Bai Xia, Phys. Rev. B 62, 12613 (2000)

    Article  ADS  Google Scholar 

  • Landolt-Bőrnstein, Group III, 17 b

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, J., Zhang, X. Electronic structure of ZnO wurtzite quantum wires. Eur. Phys. J. B 49, 415–420 (2006). https://doi.org/10.1140/epjb/e2006-00093-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00093-1

PACS.

Navigation