Skip to main content
Log in

Systematic analysis of doubly charmed baryons \(\Xi _{cc}\) and \(\Omega _{cc}\)

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we perform a systematic study of the mass spectra, the root mean square (r.m.s.) radii and the radial density distributions of the doubly charmed baryons \(\Xi _{cc}\) and \(\Omega _{cc}\). The calculations are carried out in the frame work of relativized quark model, where the baryon is regarded as a three-body system of quarks. Our results show that the excited energy of doubly charmed baryon with \(\rho \)-mode is lower than those of the \(\lambda \)-mode and \(\lambda \)-\(\rho \) mixing mode, which indicates that the lowest state is dominated by the \(\rho \)-mode. According to this conclusion, we systematically investigate the mass spectra, the r.m.s. radii of the ground and excited states (\(1S\sim 4S\), \(1P\sim 4P\), \(1D\sim 4D\), \(1F\sim 4F\) and \(1G\sim 4G\)) with \(\rho \)-mode. Using the wave functions obtained from quark model, we also study the radial density distributions. Finally, with the predicated mass spectra, the Regge trajectories of \(\Xi _{cc}\) and \(\Omega _{cc}\) in the (J,\(M^{2}\)) plane are constructed, and the slopes, intercepts are determined by linear fitting. It is found that model predicted masses fit nicely to the constructed Regge trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data is available upon request from the Authors.]

References

  1. R. L. Workman et al. [Particle Data Group], PTEP 2022, 083C01 (2022), https://doi.org/10.1093/ptep/ptac097

  2. M. Mattson et al., SELEX. Phys. Rev. Lett. 89, 112001 (2002). https://doi.org/10.1103/PhysRevLett.89.112001

    Article  ADS  Google Scholar 

  3. A. Ocherashvili et al., [SELEX]. Phys. Lett. B 628, 18–24 (2005). https://doi.org/10.1016/j.physletb.2005.09.043

  4. S.P. Ratti, Nucl. Phys. B Proc. Suppl. 115, 33–36 (2003). https://doi.org/10.1016/S0920-5632(02)01948-5

    Article  ADS  Google Scholar 

  5. B. Aubert et al., [BaBar]. Phys. Rev. D 74, 011103 (2006). https://doi.org/10.1103/PhysRevD.74.011103

  6. R. Chistov et al., [Belle]. Phys. Rev. Lett. 97, 162001 (2006). https://doi.org/10.1103/PhysRevLett.97.162001

  7. R. Aaij et al., [LHCb]. JHEP 1312, 090 (2013). https://doi.org/10.1007/JHEP12(2013)090

  8. R. Aaij et al., [LHCb]. Phys. Rev. Lett. 119(11), 112001 (2017). https://doi.org/10.1103/PhysRevLett.119.112001

  9. R. Aaij et al., [LHCb]. Phys. Rev. Lett. 121(16), 162002 (2018). https://doi.org/10.1103/PhysRevLett.121.162002

  10. R. Aaij et al., [LHCb]. JHEP 02, 049 (2020). https://doi.org/10.1007/JHEP02(2020)049

  11. W. Roberts, M. Pervin, Int. J. Mod. Phys. A 23, 2817–2860 (2008). https://doi.org/10.1142/S0217751X08041219

    Article  ADS  Google Scholar 

  12. S. Fleck, J.M. Richard, Prog. Theor. Phys. 82, 760–774 (1989). https://doi.org/10.1143/PTP.82.760

    Article  ADS  Google Scholar 

  13. S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko, Phys. Rev. D 62, 054021 (2000). https://doi.org/10.1103/PhysRevD.62.054021

    Article  ADS  Google Scholar 

  14. D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002). https://doi.org/10.1103/PhysRevD.66.014008

    Article  ADS  Google Scholar 

  15. A. Majethiya, B. Patel, A. K. Rai, P. C. Vinodkumar, https://doi.org/10.48550/arXiv.0809.4910, arXiv:0809.4910 [hep-ph](2008)

  16. A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. D 12, 147–162 (1975). https://doi.org/10.1103/PhysRevD.12.147

    Article  ADS  Google Scholar 

  17. E. Bagan, H.G. Dosch, P. Gosdzinsky, S. Narison, J.M. Richard, Z. Phys. C 64, 57–72 (1994). https://doi.org/10.1007/BF01557235

    Article  ADS  Google Scholar 

  18. B. Silvestre-Brac, Prog. Part. Nucl. Phys. 36, 263–273 (1996). https://doi.org/10.1016/0146-6410(96)00030-0

    Article  ADS  Google Scholar 

  19. J.M. Richard, Nucl. Phys. B Proc. Suppl. 50, 147–153 (1996). https://doi.org/10.1016/0920-5632(96)00382-9

    Article  ADS  Google Scholar 

  20. C. Itoh, T. Minamikawa, K. Miura, T. Watanabe, Phys. Rev. D 61, 057502 (2000). https://doi.org/10.1103/PhysRevD.61.057502

    Article  ADS  Google Scholar 

  21. J. Vijande, H. Garcilazo, A. Valcarce, F. Fernandez, Phys. Rev. D 70, 054022 (2004). https://doi.org/10.1103/PhysRevD.70.054022

    Article  ADS  Google Scholar 

  22. C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco, Eur. Phys. J. A 32, 183–199 (2007). https://doi.org/10.1140/epja/i2007-10364-y

    Article  ADS  Google Scholar 

  23. C. Albertus, E. Hernandez, J. Nieves, Phys. Lett. B 683, 21–25 (2010). https://doi.org/10.1016/j.physletb.2009.11.048

    Article  ADS  Google Scholar 

  24. A.P. Martynenko, Phys. Lett. B 663, 317–321 (2008). https://doi.org/10.1016/j.physletb.2008.04.030

    Article  ADS  Google Scholar 

  25. S.M. Gerasyuta, D.V. Ivanov, Nuovo Cim. A 112, 261–276 (1999). https://doi.org/10.1007/BF03035848

    Article  ADS  Google Scholar 

  26. Z. Ghalenovi, A.A. Rajabi, M. Hamzavi, Acta Phys. Polon. B 42, 1849–1860 (2011). https://doi.org/10.5506/APhysPolB.42.1849

    Article  Google Scholar 

  27. B. Eakins, W. Roberts, Int. J. Mod. Phys. A 27, 1250039 (2012). https://doi.org/10.1142/S0217751X1250039X

    Article  ADS  Google Scholar 

  28. Z. Ghalenovi, A.A. Rajabi, Sx. Qin, D.H. Rischke, Mod. Phys. Lett. A 29, 1450106 (2014). https://doi.org/10.1142/S0217732314501065

    Article  ADS  Google Scholar 

  29. T. Yoshida, E. Hiyama, A. Hosaka, M. Oka, K. Sadato, Phys. Rev. D 92(11), 114029 (2015). https://doi.org/10.1103/PhysRevD.92.114029

    Article  ADS  Google Scholar 

  30. Q.F. Lü, K.L. Wang, L.Y. Xiao, X.H. Zhong, Phys. Rev. D 96(11), 114006 (2017). https://doi.org/10.1103/PhysRevD.96.114006

    Article  ADS  Google Scholar 

  31. K. Parattu, S. Chakraborty, T. Padmanabhan, Eur. Phys. J. C 76(3), 129 (2016). https://doi.org/10.1140/epjc/s10052-016-3979-y

    Article  ADS  Google Scholar 

  32. Z. Ghalenovi, M.M. Sorkhi, Chin. Phys. C 47(3), 033105 (2023). https://doi.org/10.1088/1674-1137/acac6c

    Article  ADS  Google Scholar 

  33. Z. Ghalenovi, C.P. Shen, M. Moazzen Sorkhi, Phys. Lett. B 834, 137405 (2022). https://doi.org/10.1016/j.physletb.2022.137405

    Article  Google Scholar 

  34. V.E. Lyubovitskij, A. Faessler, T. Gutsche, M.A. Ivanov, J.G. Korner, Prog. Part. Nucl. Phys. 50, 329–339 (2003). https://doi.org/10.1016/S0146-6410(03)00026-7

    Article  ADS  Google Scholar 

  35. L. Tang, X.H. Yuan, C.F. Qiao, X.Q. Li, Commun. Theor. Phys. 57, 435–444 (2012). https://doi.org/10.1088/0253-6102/57/3/15

    Article  ADS  Google Scholar 

  36. A.K. Likhoded, Phys. Atom. Nucl. 72, 529–535 (2009). https://doi.org/10.1134/S1063778809030181

    Article  ADS  Google Scholar 

  37. I.M. Narodetskii, A.N. Plekhanov, A.I. Veselov, JETP Lett. 77, 58–62 (2003). https://doi.org/10.1134/1.1564220

    Article  ADS  Google Scholar 

  38. H. Mutuk, Eur. Phys. J. Plus 137(1), 10 (2022). https://doi.org/10.1140/epjp/s13360-021-02256-4

    Article  ADS  Google Scholar 

  39. J.R. Zhang, M.Q. Huang, Phys. Rev. D 78, 094007 (2008). https://doi.org/10.1103/PhysRevD.78.094007

    Article  ADS  Google Scholar 

  40. L. Tang, X.H. Yuan, C.F. Qiao, X.Q. Li, Commun. Theor. Phys. 57, 435–444 (2012). https://doi.org/10.1088/0253-6102/57/3/15

    Article  ADS  Google Scholar 

  41. Z.G. Wang, Eur. Phys. J. A 45, 267–274 (2010). https://doi.org/10.1140/epja/i2010-11004-3

    Article  ADS  Google Scholar 

  42. Z.G. Wang, Eur. Phys. J. A 47, 81–88 (2010). https://doi.org/10.1140/epja/i2011-11081-8

    Article  ADS  Google Scholar 

  43. Z.G. Wang, Eur. Phys. J. C 78(10), 826 (2018). https://doi.org/10.1140/epjc/s10052-018-6300-4

    Article  ADS  Google Scholar 

  44. Z.G. Wang, Eur. Phys. J. C 72, 2099 (2012). https://doi.org/10.1140/epjc/s10052-012-2099-6

    Article  ADS  Google Scholar 

  45. Z.G. Wang, Eur. Phys. J. C 72, 2099 (2012). https://doi.org/10.1140/epjc/s10052-012-2099-6

    Article  ADS  Google Scholar 

  46. T.M. Aliev, K. Azizi, M. Savci, Nucl. Phys. A 895, 59–70 (2012). https://doi.org/10.1016/j.nuclphysa.2012.09.009

    Article  ADS  Google Scholar 

  47. T.M. Aliev, K. Azizi, M. Savci, J. Phys. G 40, 065003 (2013). https://doi.org/10.1088/0954-3899/40/6/065003

    Article  ADS  Google Scholar 

  48. V.V. Kiselev, A.E. Kovalsky, Phys. Rev. D 64, 014002 (2001). https://doi.org/10.1103/PhysRevD.64.014002

    Article  ADS  Google Scholar 

  49. S. Narison, R. Albuquerque, Phys. Lett. B 694, 217–225 (2011). https://doi.org/10.1016/j.physletb.2010.09.051

    Article  Google Scholar 

  50. H.X. Chen, Q. Mao, W. Chen, X. Liu, S.L. Zhu, Phys. Rev. D 96(3), 031501 (2017). https://doi.org/10.1103/PhysRevD.96.031501. [erratum: Phys. Rev. D 96, no.11, 119902 (2017)]

  51. D.H. He, K. Qian, Y.B. Ding, X.Q. Li, P.N. Shen, Phys. Rev. D 70, 094004 (2004). https://doi.org/10.1103/PhysRevD.70.094004

    Article  ADS  Google Scholar 

  52. A. Bernotas, V. Simonis, Lith. J. Phys. 49, 19–28 (2009). https://doi.org/10.3952/lithjphys.49110

    Article  Google Scholar 

  53. W.X. Zhang, H. Xu, D. Jia, Phys. Rev. D 104(11), 114011 (2021). https://doi.org/10.1103/PhysRevD.104.114011

    Article  ADS  Google Scholar 

  54. D.H. He, K. Qian, Y.B. Ding, X.Q. Li, P.N. Shen, Phys. Rev. D 70, 094004 (2004). https://doi.org/10.1103/PhysRevD.70.094004

    Article  ADS  Google Scholar 

  55. Q.X. Yu, X.H. Guo, Nucl. Phys. B 947, 114727 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114727

    Article  Google Scholar 

  56. F. Giannuzzi, Phys. Rev. D 79, 094002 (2009). https://doi.org/10.1103/PhysRevD.79.094002

    Article  ADS  Google Scholar 

  57. S.P. Tong, Y.B. Ding, X.H. Guo, H.Y. Jin, X.Q. Li, P.N. Shen, R. Zhang, Phys. Rev. D 62, 054024 (2000). https://doi.org/10.1103/PhysRevD.62.054024

    Article  ADS  Google Scholar 

  58. M.H. Weng, X.H. Guo, A.W. Thomas, Phys. Rev. D 83, 056006 (2011). https://doi.org/10.1103/PhysRevD.83.056006

  59. N. Brambilla, A. Vairo, T. Rosch, Phys. Rev. D 72, 034021 (2005). https://doi.org/10.1103/PhysRevD.72.034021

    Article  ADS  Google Scholar 

  60. J. Hu, T. Mehen, Phys. Rev. D 73, 054003 (2006). https://doi.org/10.1103/PhysRevD.73.054003

    Article  ADS  Google Scholar 

  61. S. Fleming, T. Mehen, Phys. Rev. D 73, 034502 (2006). https://doi.org/10.1103/PhysRevD.73.034502

    Article  ADS  Google Scholar 

  62. T. Mehen, B.C. Tiburzi, Phys. Rev. D 74, 054505 (2006). https://doi.org/10.1103/PhysRevD.74.054505

    Article  ADS  Google Scholar 

  63. H. Bahtiyar, K.U. Can, G. Erkol, M. Oka, T.T. Takahashi, Phys. Rev. D 98(11), 114505 (2018). https://doi.org/10.1103/PhysRevD.98.114505

    Article  ADS  Google Scholar 

  64. R. Lewis, N. Mathur, R.M. Woloshyn, Phys. Rev. D 64, 094509 (2001). https://doi.org/10.1103/PhysRevD.64.094509

    Article  ADS  Google Scholar 

  65. J.M. Flynn et al., [UKQCD]. JHEP 07, 066 (2003). https://doi.org/10.1088/1126-6708/2003/07/066

  66. H. Na, S. A. Gottlieb, PoS LATTICE2007, 124 (2007), https://doi.org/10.22323/1.042.0124

  67. L. Liu, H.W. Lin, K. Orginos, A. Walker-Loud, Phys. Rev. D 81, 094505 (2010). https://doi.org/10.1103/PhysRevD.81.094505

    Article  ADS  Google Scholar 

  68. Z.S. Brown, W. Detmold, S. Meinel, K. Orginos, Phys. Rev. D 90(9), 094507 (2014). https://doi.org/10.1103/PhysRevD.90.094507

    Article  ADS  Google Scholar 

  69. M. Padmanath, R.G. Edwards, N. Mathur, M. Peardon, Phys. Rev. D 91(9), 094502 (2015). https://doi.org/10.1103/PhysRevD.91.094502

    Article  ADS  Google Scholar 

  70. V.V. Kiselev, A.V. Berezhnoy, A.K. Likhoded, Phys. Atom. Nucl. 81(3), 369–372 (2018). https://doi.org/10.1134/S1063778818030134

    Article  ADS  Google Scholar 

  71. M. Karliner, J.L. Rosner, Phys. Rev. D 97(9), 094006 (2018). https://doi.org/10.1103/PhysRevD.97.094006

    Article  ADS  Google Scholar 

  72. J. Soto, J. Tarrús Castellà, Phys. Rev. D 104, 074027 (2021). https://doi.org/10.1103/PhysRevD.104.074027

    Article  ADS  Google Scholar 

  73. D.B. Lichtenberg, R. Roncaglia, E. Predazzi, Phys. Rev. D 53, 6678–6681 (1996). https://doi.org/10.1103/PhysRevD.53.6678

    Article  ADS  Google Scholar 

  74. J. Oudichhya, K. Gandhi, A. Kumar Rai, Phys. Scr. 97(5), 054001 (2022). https://doi.org/10.1088/1402-4896/ac5de7

    Article  ADS  Google Scholar 

  75. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189–231 (1985). https://doi.org/10.1103/PhysRevD.32.189

    Article  ADS  Google Scholar 

  76. S. Capstick, N. Isgur, Phys. Rev. D 34(9), 2809–2835 (1986). https://doi.org/10.1103/physrevd.34.2809

    Article  ADS  Google Scholar 

  77. S. Capstick, N. Isgur, A.I.P. Conf, Proc. 132, 267–271 (1985). https://doi.org/10.1063/1.35361

    Article  Google Scholar 

  78. Q.F. Lü, D.Y. Chen, Y.B. Dong, Eur. Phys. J. C 80(9), 871 (2020). https://doi.org/10.1140/epjc/s10052-020-08454-1

    Article  ADS  Google Scholar 

  79. Q.F. Lü, D.Y. Chen, Y.B. Dong, E. Santopinto, Phys. Rev. D 104(5), 054026 (2021). https://doi.org/10.1103/PhysRevD.104.054026

    Article  ADS  Google Scholar 

  80. Q.F. Lü, D.Y. Chen, Y.B. Dong, Phys. Rev. D 102(7), 074021 (2020). https://doi.org/10.1103/PhysRevD.102.074021

    Article  ADS  Google Scholar 

  81. G.L. Yu, Z.Y. Li, Z.G. Wang, J. Lu, M. Yan, Nucl. Phys. B 990, 116183 (2023). https://doi.org/10.1016/j.nuclphysb.2023.116183. [arXiv:2206.08128 [hep-ph]]

    Article  Google Scholar 

  82. Z. Y. Li, G. L. Yu, Z. G. Wang, J. Z. Gu, J. Lu, https://doi.org/10.48550/arXiv.2207.04167, arXiv:2207.04167 [hep-ph], (2022)

  83. M. Kamimura, Phys. Rev. A 38, 621–624 (1988). https://doi.org/10.1103/PhysRevA.38.621

    Article  ADS  Google Scholar 

  84. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223–307 (2003). https://doi.org/10.1016/S0146-6410(03)90015-9

    Article  ADS  Google Scholar 

  85. Y.W. Pan, T.W. Wu, M.Z. Liu, L.S. Geng, Phys. Rev. D 105(11), 114048 (2022). https://doi.org/10.1103/PhysRevD.105.114048. [arXiv:2204.02295 [hep-ph]]

  86. D. Morel, https://doi.org/10.48550/arXiv.nucl-th/0204028, [arXiv:nucl-th/0204028 [nucl-th]]

  87. Q.F. Lü, H. Nagahiro, A. Hosaka, Phys. Rev. D 107(1), 014025 (2023). https://doi.org/10.1103/PhysRevD.107.014025. [arXiv:2212.02783 [hep-ph]]

    Article  ADS  Google Scholar 

  88. B. Silvestre-Brac, C. Gignoux, Phys. Rev. D 43, 3699–3708 (1991). https://doi.org/10.1103/PhysRevD.43.3699

    Article  ADS  Google Scholar 

  89. C. Garcia-Recio, V.K. Magas, T. Mizutani, J. Nieves, A. Ramos, L.L. Salcedo, L. Tolos, Phys. Rev. D 79, 054004 (2009). https://doi.org/10.1103/PhysRevD.79.054004

    Article  ADS  Google Scholar 

  90. V.R. Debastiani, J.M. Dias, W.H. Liang, E. Oset, Phys. Rev. D 97(9), 094035 (2018). https://doi.org/10.1103/PhysRevD.97.094035

    Article  ADS  Google Scholar 

  91. F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37, 617 (1988). https://doi.org/10.1007/BF01549722

    Article  ADS  Google Scholar 

  92. B. Liu, P.N. Shen, H.C. Chiang, Phys. Rev. C 55, 3021–3025 (1997). https://doi.org/10.1103/PhysRevC.55.3021

    Article  ADS  Google Scholar 

  93. T. Das, Electron. J. Theor. Phys. 35, 207–214 (2016). https://doi.org/10.48550/arXiv.1408.6139

    Article  Google Scholar 

  94. T. Regge, Nuovo Cim. 14, 951 (1959). https://doi.org/10.1007/BF02728177

    Article  ADS  Google Scholar 

  95. T. Regge, Nuovo Cim. 18, 947–956 (1960). https://doi.org/10.1007/BF02733035

    Article  ADS  Google Scholar 

  96. G.F. Chew, S.C. Frautschi, Phys. Rev. Lett. 7, 394–397 (1961). https://doi.org/10.1103/PhysRevLett.7.394

    Article  ADS  Google Scholar 

  97. G.F. Chew, S.C. Frautschi, Phys. Rev. Lett. 8, 41–44 (1962). https://doi.org/10.1103/PhysRevLett.8.41

    Article  ADS  Google Scholar 

  98. G.S. Bali, Phys. Rept. 343, 1–136 (2001). https://doi.org/10.1016/S0370-1573(00)00079-X

    Article  ADS  Google Scholar 

  99. D.V. Bugg, Phys. Rept. 397, 257–358 (2004). https://doi.org/10.1016/j.physrep.2004.03.008

    Article  ADS  Google Scholar 

  100. E. Klempt, A. Zaitsev, Phys. Rept. 454, 1–202 (2007). https://doi.org/10.1016/j.physrep.2007.07.006

    Article  ADS  Google Scholar 

  101. W. Lucha, F.F. Schoberl, D. Gromes, Phys. Rept. 200, 127–240 (1991). https://doi.org/10.1016/0370-1573(91)90001-3

  102. Y. Nambu, Phys. Rev. D 10, 4262 (1974). https://doi.org/10.1103/PhysRevD.10.4262

  103. Y. Nambu, Phys. Lett. B 80, 372–376 (1979). https://doi.org/10.1016/0370-2693(79)91193-6

    Article  ADS  Google Scholar 

  104. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D 84, 014025 (2011). https://doi.org/10.1103/PhysRevD.84.014025

    Article  ADS  Google Scholar 

  105. T. Gutsche, M.A. Ivanov, J.G. Körner, V.E. Lyubovitskij, Z. Tyulemissov, Phys. Rev. D 100(11), 114037 (2019). https://doi.org/10.1103/PhysRevD.100.114037

    Article  ADS  Google Scholar 

  106. H.Y. Cheng, G. Meng, F. Xu, J. Zou, Phys. Rev. D 101(3), 034034 (2020). https://doi.org/10.1103/PhysRevD.101.034034

    Article  ADS  Google Scholar 

  107. L.Y. Xiao, K.L. Wang, Q. f Lu, X.H. Zhong, S.L. Zhu, Phys. Rev. D 96(9), 094005 (2017). https://doi.org/10.1103/PhysRevD.96.094005

    Article  ADS  Google Scholar 

  108. H.S. Li, L. Meng, Z.W. Liu, S.L. Zhu, Phys. Lett. B 777, 169–176 (2018). https://doi.org/10.1016/j.physletb.2017.12.031

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation, Grant Number 12175068 and Natural Science Foundation of HeBei Province, Grant Number A2018502124.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Liang Yu.

Additional information

Communicated by Eulogio Oset.

Appendix A: Masses and r.m.s. radii of the \(\Xi _{cc}\) and \(\Omega _{cc}\) heavy baryons

Appendix A: Masses and r.m.s. radii of the \(\Xi _{cc}\) and \(\Omega _{cc}\) heavy baryons

Table 4 Masses (in MeV) and r.m.s. radii (in fm) of the \(\Omega _{cc}\) heavy baryons

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, GL., Meng, Y., Li, ZY. et al. Systematic analysis of doubly charmed baryons \(\Xi _{cc}\) and \(\Omega _{cc}\). Eur. Phys. J. A 59, 126 (2023). https://doi.org/10.1140/epja/s10050-023-01044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-01044-1

Navigation