Skip to main content
Log in

First direct search for \(2 \epsilon\) and \( \epsilon\beta^{+}\) decay of 144Sm and \(2 \beta^{-}\) decay of 154Sm

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The first direct search for the double electron capture (\( 2\epsilon\)) and the electron capture with positron emission (\( \epsilon\beta^+\)) in 144Sm to the ground state and to the excited levels of 144Nd was realized by measuring --over 1899h-- a 342g sample of highly purified samarium oxide (Sm2O3) with the ultra-low background HP-Ge \(\gamma\) spectrometer GeCris (465cm3) at the STELLA facility of the Gran Sasso National Laboratory (LNGS). No effect was observed and half-life limits were estimated at the level of \( T_{1/2} \sim (0.1 - 1.3) \times 10^{20}\) yr (90% C.L.). Moreover, for the first time half-life limits of the double beta (\( 2\beta^-\)) decay of 154Sm to several excited levels of 154Gd have been set; they are at the level of \( T_{1/2} \sim (0.06 - 8) \times 10^{20}\) yr (90% C.L.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barea et al., Phys. Rev. Lett. 109, 042501 (2012)

    ADS  Google Scholar 

  2. W. Rodejohann, J. Phys. G 39, 124008 (2012)

    ADS  Google Scholar 

  3. F.F. Deppisch et al., J. Phys. G 39, 124007 (2012)

    ADS  Google Scholar 

  4. S.M. Bilenky et al., Int. J. Mod. Phys. A 30, 1530001 (2015)

    ADS  MathSciNet  Google Scholar 

  5. S. Dell’Oro et al., Adv. High Energy Phys. 2016, 2162659 (2016)

    Google Scholar 

  6. J.D. Vergados et al., Int. J. Mod. Phys. E 25, 1630007 (2016)

    ADS  Google Scholar 

  7. V.I. Tretyak et al., At. Data Nucl. Data Tables 80, 83 (2002)

    ADS  Google Scholar 

  8. S.R. Elliott, Mod. Phys. Lett. A 27, 123009 (2012)

    Google Scholar 

  9. A. Giuliani et al., Adv. High Energy Phys. 2012, 857016 (2012)

    Google Scholar 

  10. O. Cremonesi et al., Adv. High Energy Phys. 2014, 951432 (2014)

    Google Scholar 

  11. X. Sarazin, J. Phys.: Conf. Ser. 593, 012006 (2015)

    Google Scholar 

  12. R. Arnold et al., Phys. Rev. D 92, 072011 (2015)

    ADS  Google Scholar 

  13. A. Gando et al., Phys. Rev. Lett. 117, 082503 (2016)

    ADS  Google Scholar 

  14. J.B. Albert et al., Phys. Rev. Lett. 120, 072701 (2018)

    ADS  Google Scholar 

  15. C. Alduino et al., Phys. Rev. Lett. 120, 132501 (2018)

    ADS  Google Scholar 

  16. C.E. Aalseth et al., Phys. Rev. Lett. 120, 132502 (2018)

    ADS  Google Scholar 

  17. M. Agostini et al., Phys. Rev. Lett. 120, 132503 (2018)

    ADS  Google Scholar 

  18. O. Azzolini et al., Phys. Rev. Lett. 120, 232502 (2018)

    ADS  Google Scholar 

  19. J. Maalampi et al., Adv. High Energy Phys. 2013, 505874 (2013)

    Google Scholar 

  20. M. Hirsch et al., Z. Phys. A 347, 151 (1994)

    ADS  Google Scholar 

  21. R. Winter et al., Phys. Rev. 100, 142 (1955)

    ADS  Google Scholar 

  22. M.B. Voloshin et al., JETP Lett. 35, 656 (1982)

    ADS  Google Scholar 

  23. J. Bernabeu et al., Nucl. Phys. B 223, 15 (1983)

    ADS  Google Scholar 

  24. K. Blaum, Double-Electron Capture, in preparation

  25. M.I. Krivoruchenko et al., Nucl. Phys. A 859, 140 (2011)

    ADS  Google Scholar 

  26. M. Georgi et al., Nucl. Phys. B 193, 297 (1981)

    ADS  Google Scholar 

  27. S.A. Eliseev et al., J. Phys. G 39, 124003 (2012)

    ADS  Google Scholar 

  28. R. Saakyan, Annu. Rev. Nucl. Part. Sci. 63, 503 (2013)

    ADS  Google Scholar 

  29. A.A. Sonzogni, Nucl. Data Sheets 93, 599 (2001)

    ADS  Google Scholar 

  30. C.W. Reich, Nucl. Data Sheets 110, 2257 (2009)

    ADS  Google Scholar 

  31. M. Wang et al., Chin. Phys. C 41, 030003 (2017)

    ADS  Google Scholar 

  32. J. Meija et al., Pure Appl. Chem. 88, 293 (2016)

    Google Scholar 

  33. P. Belli et al., Nucl. Phys. A 930, 195 (2014)

    ADS  Google Scholar 

  34. P. Belli et al., Nucl. Phys. A 990, 64 (2019)

    ADS  Google Scholar 

  35. A.S. Barabash et al., Nucl. Phys. At. Energy 19, 95 (2018)

    ADS  Google Scholar 

  36. P. Belli et al., J. Phys. G 45, 095101 (2018)

    ADS  Google Scholar 

  37. P. Belli et al., Eur. Phys. J. A 53, 172 (2017)

    ADS  Google Scholar 

  38. R.S. Boiko, Int. J. Mod. Phys. A 32, 1743005 (2017)

    ADS  Google Scholar 

  39. Z. Sujkowski et al., Phys. Rev. C 70, 052501 (2004)

    ADS  Google Scholar 

  40. F. Nozzoli, Phys. Rev. C 97, 015501 (2018)

    ADS  Google Scholar 

  41. J.G. Hirsch et al., Phys. Lett. B 534, 57 (2002)

    ADS  Google Scholar 

  42. J. Barea et al., Phys. Rev. Lett. 109, 042501 (2012)

    ADS  Google Scholar 

  43. J. Barea et al., Phys. Rev. C 87, 014315 (2013)

    ADS  Google Scholar 

  44. F. Iachello et al., Nucl. Part. Phys. Proc. 265, 25 (2015)

    Google Scholar 

  45. A.A. Raduta et al., Phys. Rev. C 69, 064321 (2004)

    ADS  Google Scholar 

  46. B. Pritychenko, arXiv:1004.3280 [nucl-th]

  47. C.M. Raduta et al., Phys. Rev. C 84, 064322 (2011)

    ADS  Google Scholar 

  48. Y.J. Ren et al., Phys. Rev. C 89, 064603 (2014)

    ADS  Google Scholar 

  49. V.I. Tretyak, Yu.G. Zdesenko, At. Data Nucl. Data Tables 61, 43 (1995)

    ADS  Google Scholar 

  50. A.V. Derbin et al., Phys. At. Nucl. 59, 2037 (1996)

    Google Scholar 

  51. P. Belli et al., Eur. Phys. J. A 53, 172 (2017)

    ADS  Google Scholar 

  52. P. Belli et al., Nucl. Phys. A 859, 126 (2011)

    ADS  Google Scholar 

  53. I. Kawrakow, D.W.O. Rogers, NRCC Report PIRS-701, Ottawa, 2003

  54. O.A. Ponkratenko et al., Phys. At. Nucl. 63, 1282 (2000)

    Google Scholar 

  55. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998)

    ADS  Google Scholar 

  56. A.P. Meshik et al., Phys. Rev. C 64, 035205 (2001)

    ADS  Google Scholar 

  57. M. Pujol et al., Geochim. Cosmochim. Acta 73, 6834 (2009)

    ADS  Google Scholar 

  58. Yu.M. Gavrilyuk et al., Phys. Rev. C 87, 035501 (2013)

    ADS  Google Scholar 

  59. S.S. Ratkevich et al., Phys. Rev. C 96, 065502 (2017)

    ADS  Google Scholar 

  60. M. Agostini et al., Eur. Phys. J. C 76, 652 (2016)

    ADS  Google Scholar 

  61. G. Angloher et al., J. Phys. G 43, 095202 (2016)

    ADS  Google Scholar 

  62. B. Lehnert et al., J. Phys. G 43, 065201 (2016)

    ADS  Google Scholar 

  63. P. Belli et al., J. Phys. G 38, 115107 (2011)

    ADS  Google Scholar 

  64. P. Belli et al., Phys. Rev. C 87, 034607 (2013)

    ADS  Google Scholar 

  65. P. Belli et al., Phys. Rev. C 93, 045502 (2016)

    ADS  Google Scholar 

  66. A.S. Barabash et al., Phys. Rev. C 83, 045503 (2011)

    ADS  Google Scholar 

  67. E. Andreotti et al., Astropart. Phys. 34, 643 (2011)

    ADS  Google Scholar 

  68. Yu.M. Gavrilyuk et al., Phys. At. Nucl. 78, 1563 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bernabei.

Additional information

Communicated by K. Blaum

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belli, P., Bernabei, R., Boiko, R.S. et al. First direct search for \(2 \epsilon\) and \( \epsilon\beta^{+}\) decay of 144Sm and \(2 \beta^{-}\) decay of 154Sm. Eur. Phys. J. A 55, 201 (2019). https://doi.org/10.1140/epja/i2019-12911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12911-3

Navigation