Skip to main content
Log in

\(\tau \rightarrow f_{1}(1285) \pi^{-}\nu_{\tau}\) decay in the extended Nambu-Jona-Lasinio model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Within the framework of the extended Nambu-Jona-Lasinio model, we calculate the matrix element of the \(\tau \rightarrow f_{1}(1285) \pi^{-} \nu_{\tau}\) decay, obtain the invariant mass distribution of the \( f_{1}\pi\)-system and estimate the branching ratio \(\mathrm{Br}(\tau \rightarrow f_{1} \pi^{-}\nu_{\tau}) = 4.0\times 10^{-4}\). The two types of contributions are considered: the contact interaction, and the axial-vector \(I^{G}(J^{PC})=1^{-}(1^{++})\) resonance exchange. The latter includes the ground \(a_{1}(1260)\) state, and its first radially excited state, \( a_{1}(1640)\). The corrections caused by the \(\pi\)-\(a_{1}\) transitions are taken into account. Our estimate is in a good agreement with the latest empirical result \(\mathrm{Br}(\tau \rightarrow f_{1} \pi^{-} \nu_{\tau})=(3.9\pm 0.5)\times 10^{-4}\). The distribution function obtained for the decay \( \tau \rightarrow f_{1}(1285) \pi^{-} \nu_{\tau}\) shows a clear signal of \(a_{1}(1640)\) resonance which should be compared with future experimental data including our estimate of the decay width \( \Gamma (a_{1}(1640) \rightarrow f_{1} \pi)=14.1\) MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BABAR Collaboration (J.P. Lees et al.), Phys. Rev. D 86, 092010 (2012)

    Article  Google Scholar 

  2. BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 77, 112002 (2008)

    Article  Google Scholar 

  3. BABAR Collaboration (B. Aubert et al.), Phys. Rev. D 72, 072001 (2005)

    Article  Google Scholar 

  4. CLEO Collaboration (T. Bergfeld et al.), Phys. Rev. Lett. 79, 2406 (1997)

    Article  Google Scholar 

  5. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  6. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  Google Scholar 

  7. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  8. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 517 (1985)

    Article  ADS  Google Scholar 

  9. G. ’t Hooft, Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

  10. E. Witten, Nucl. Phys. B 160, 57 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Schwinger, Phys. Lett. B 24, 473 (1967)

    Article  ADS  Google Scholar 

  12. J. Wess, B. Zumino, Phys. Rev. 163, 1727 (1967)

    Article  ADS  Google Scholar 

  13. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  14. S. Gasiorowicz, D.A. Geffen, Rev. Mod. Phys. 41, 531 (1969)

    Article  ADS  Google Scholar 

  15. U.-G. Meißner, Phys. Rep. 161, 213 (1988)

    Article  ADS  Google Scholar 

  16. M. Bando, T. Kugo, K. Yamawaki, Phys. Rep. 164, 217 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 231, 311 (1989)

    Article  ADS  Google Scholar 

  18. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989)

    Article  ADS  Google Scholar 

  19. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004)

    Article  ADS  Google Scholar 

  20. L. Roca, E. Oset, J. Singh, Phys. Rev. D 72, 014002 (2005)

    Article  ADS  Google Scholar 

  21. Y. Zhou, X.L. Ren, H.X. Chen, L.S. Geng, Phys. Rev. D 90, 014020 (2014)

    Article  ADS  Google Scholar 

  22. J.J. Xie, Phys. Rev. C 92, 065203 (2015)

    Article  ADS  Google Scholar 

  23. G. Calderon, J.H. Munoz, C.E. Vera, Phys. Rev. D 87, 114011 (2013)

    Article  ADS  Google Scholar 

  24. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  25. B.A. Li, Phys. Rev. D 55, 1436 (1997)

    Article  ADS  Google Scholar 

  26. T. Eguchi, Phys. Rev. D 14, 2755 (1976)

    Article  ADS  Google Scholar 

  27. M.K. Volkov, D. Ebert, Sov. J. Nucl. Phys. 36, 736 (1982) Yad. Fiz. 36

    Google Scholar 

  28. D. Ebert, M.K. Volkov, Z. Phys. C 16, 205 (1983)

    Article  ADS  Google Scholar 

  29. M.K. Volkov, Ann. Phys. 157, 282 (1984)

    Article  ADS  Google Scholar 

  30. M.K. Volkov, Sov. J. Part. Nucl. 17, 186 (1986) Fiz. Elem. Chast. At. Yadra 17

    Google Scholar 

  31. D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986)

    Article  ADS  Google Scholar 

  32. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)

    Article  ADS  Google Scholar 

  33. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. M.K. Volkov, Phys. Part. Nucl. 24, 35 (1993) Fiz. Elem. Chast. At. Yadra 24

    ADS  Google Scholar 

  35. J. Bijnens, C. Bruno, E. de Rafael, Nucl. Phys. B 390, 501 (1993)

    Article  ADS  Google Scholar 

  36. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994)

    Article  ADS  Google Scholar 

  37. D. Ebert, H. Reinhardt, M.K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994)

    Article  ADS  Google Scholar 

  38. V. Bernard, A.H. Blin, B. Hiller, Y.P. Ivanov, A.A. Osipov, Ulf-G. Meißner, Ann. Phys. 249, 499 (1996)

    Article  ADS  Google Scholar 

  39. A.V. Vishneva, M.K. Volkov, D.G. Kostunin, Eur. Phys. J. A 50, 137 (2014)

    Article  ADS  Google Scholar 

  40. M.K. Volkov, A.A. Osipov, JETP Lett. 105, 215 (2017) Pis’ma ZETF 105

    Article  ADS  Google Scholar 

  41. A.A. Osipov, M.K. Volkov, Ann. Phys. 382, 50 (2017)

    Article  ADS  Google Scholar 

  42. J. Morais, B. Hiller, A.A. Osipov, Phys. Lett. B 773, 277 (2017)

    Article  ADS  Google Scholar 

  43. S. Wallner, arXiv:1711.09782 [hep-ex].

  44. M.K. Volkov, C. Weiss, Phys. Rev. D 56, 221 (1997)

    Article  ADS  Google Scholar 

  45. M.K. Volkov, Phys. Atom. Nucl. 60, 1920 (1997) Yad. Fiz. 60

    ADS  Google Scholar 

  46. M.K. Volkov, D. Ebert, M. Nagy, Int. J. Mod. Phys. A 13, 5443 (1998)

    Article  ADS  Google Scholar 

  47. M.K. Volkov, V.L. Yudichev, Phys. Part. Nucl. 31, 282 (2000) Fiz. Elem. Chast. At. Yadra 31

    Google Scholar 

  48. M.K. Volkov, A.E. Radzhabov, Phys. Usp. 49, 551 (2006) Usp. Fiz. Nauk 176

    Article  ADS  Google Scholar 

  49. M.K. Volkov, A.B. Arbuzov, Phys. Part. Nucl. 47, 489 (2016) Fiz. Elem. Chast. At. Yadra 47

    Article  Google Scholar 

  50. M.K. Volkov, A.B. Arbuzov, Phys. Usp. 60, 643 (2017) Usp. Fiz. Nauk 187

    Article  ADS  Google Scholar 

  51. M.A. Markov, Sov. J. Phys. 3, 452 (1940)

    Google Scholar 

  52. H. Yukawa, Phys. Rev. 77, 219 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  53. J. Lukierski, M. Oziewicz, Phys. Lett. B 69, 339 (1977)

    Article  ADS  Google Scholar 

  54. T. Eguchi, Phys. Rev. D 17, 611 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  55. A.A. Osipov, A.A. Pivovarov, M.K. Volkov, Phys. Rev. D 96, 054012 (2017)

    Article  ADS  Google Scholar 

  56. COMPASS Collaboration (C. Adolph et al.), Phys. Rev. Lett. 115, 082001 (2015)

    Article  Google Scholar 

  57. T. Gutsche, M.A. Ivanov, J.G. Krner, V.E. Lyubovitskij, K. Xu, Phys. Rev. D 96, 114004 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Osipov.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, M.K., Pivovarov, A.A. & Osipov, A.A. \(\tau \rightarrow f_{1}(1285) \pi^{-}\nu_{\tau}\) decay in the extended Nambu-Jona-Lasinio model. Eur. Phys. J. A 54, 61 (2018). https://doi.org/10.1140/epja/i2018-12503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12503-9

Navigation