Skip to main content
Log in

Isomeric yield ratios of 87m,gY from different nuclear reactions

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The independent isomeric yield ratios of 87m,gY produced from the 93Nb(γ, α2n) and natZr(γ, pxn) reactions with the end-point bremsstrahlung energy of 45–70 MeV have been determined by an off-line γ-ray spectrometric technique using 100 MeV electron linac at the Pohang accelerator laboratory, Korea. The isomeric yield ratios of 87m,gY were also determined from the natZr(p, αxn) and the 89Y(p,p2n) reactions with E P = 15–45 MeV as well as those from the 89Y(α, α2n) reaction with E α = 32–43 MeV using the MC-50 cyclotron at the Korea Institute of Radiological and Medical Science, Korea. The isomeric yield ratios of 87m,gY from the present work in the 93Nb(γ, α2n), natZr(γ, pxn), natZr(p, αxn), 89Y(p,p2n), and 89Y(α, α2n) reactions were compared with those of the literature data in the 85Rb(α, 2n), the 86,87,88Sr(d, xn), 89Y(n,3n), and the 89Y(γ, 2n) reactions to examine the role of target, projectiles, and ejectiles through compound nucleus excitation energy and input angular momentum. The isomeric yield ratios of 87m,gY in the above eleven reactions were also calculated using the computer code TALYS 1.4 and compared with the experimental data. The different behaviors between photon- and neutron-induced reactions and charged-particle-induced reactions are discussed from the viewpoint of compound and non-compound (pre-equilibrium) process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagemans, The Nuclear Fission Process (CRC, London, 1990).

  2. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic, New York, 1973).

  3. J.R. Huizenga, R. Vandenbosch, Phys. Rev. 120, 1305 (1960).

    Article  ADS  MATH  Google Scholar 

  4. R. Vandenbosch, J.R. Huizenga, Phys. Rev. 120, 1313 (1960).

    Article  ADS  Google Scholar 

  5. M. Blann, Annu. Rev. Nucl. Sci. 25, 123 (1975).

    Article  ADS  Google Scholar 

  6. M.B. Chadwick et al., Nucl. Data Sheets 107, 2931 (2006).

    Article  ADS  Google Scholar 

  7. K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011).

    Article  ADS  MATH  Google Scholar 

  8. A.J. Koning, The JEFF evaluated data project, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, 2007 (EDP Sciences, 2008).

  9. China Evaluated Nuclear Data Library, CENDL-3.1 (2009), Z.G. Ge, The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1), in Proceedings of the International Conference on Nuclear Data for Science and Technology, Jeju Island, Korea (2010).

  10. IAEA-EXFOR Database, at http://www-nds.iaea.org/exfor.

  11. W.B. Walter, J.P. Hummel, Phys. Rev. 150, 867 (1966).

    Article  ADS  Google Scholar 

  12. T. Kato, Y. Oka, Talanta 19, 515 (1972).

    Article  Google Scholar 

  13. J. Watson et al., Phys. Rev. C 6, 497 (1972).

    Article  ADS  Google Scholar 

  14. M.G. Davydov et al., At. Energy 77, 717 (1994).

    Article  MATH  Google Scholar 

  15. D. Kolev, App. Radiat. Iso. 49, 989 (1998).

    Article  Google Scholar 

  16. S.R. Palvanov, O. Razhabov, At. Energy 84, 222 (1998).

    Article  Google Scholar 

  17. S.R. Palvanov, O. Razhabov, At. Energy 87, 533 (1999).

    Article  Google Scholar 

  18. Md.S. Rahman et al., Nucl. Instrum. Methods Phys. Res. B 267, 3511 (2009).

    Article  ADS  Google Scholar 

  19. K.S. Kim et al., J. Radioanal. Nucl. Chem. 287, 869 (2011).

    Article  Google Scholar 

  20. N.A. Demekhina et al., Phys. At. Nucl. 65, 365 (2002).

    Article  Google Scholar 

  21. O.A. Bezshyyko et al., Izv. Ross. Nauk. Ser. Fiz. 75, 997 (2011).

    MATH  Google Scholar 

  22. S.R. Palvanov et al., Izv. Ross. Nauk. Ser. Fiz. 75, 239 (2011).

    Google Scholar 

  23. R. Vandenbosch et al., Phys. Rev. 137, B1134 (1965).

    Article  ADS  Google Scholar 

  24. G.B. Saha et al., Phys. Rev. 144, 962 (1966).

    Article  ADS  Google Scholar 

  25. S.K. Saha et al., J. Radioanal. Nucl. Chem. Lett. 119, 30 (1987).

    Article  Google Scholar 

  26. S.M. Qaim et al., Phys. Rev. 38, 645 (1988).

    Article  ADS  Google Scholar 

  27. R. Guin et al., Phys. Rev. 46, 250 (1992).

    ADS  Google Scholar 

  28. G.W.A. Newton et al., J. Inorg. Nucl. Chem. 43, 2227 (1981).

    Article  Google Scholar 

  29. L.T. Auler et al., J. Inorg. Nucl. Chem. 43, 2611 (1981).

    Article  Google Scholar 

  30. C.L. Branquinho et al., J. Inorg. Nucl. Chem. 41, 617 (1979).

    Article  Google Scholar 

  31. J.J. Hogan, J. Inorg. Nucl. Chem. 35, 705 (1973).

    Article  Google Scholar 

  32. M.U. Khandaker et al., Appl. Radiat. Isot. 67, 1341 (2009).

    Article  Google Scholar 

  33. M.U. Khandaker et al., Nucl. Instum. Methods B 271, 72 (2012).

    Article  ADS  Google Scholar 

  34. J. Vrzalova et al., Nucl. Instrum. Methods A 726, 84 (2013).

    Article  ADS  Google Scholar 

  35. P. Chudoba, Measurement of cross-sections of Yttrium (n,xn) threshold reactions by means of gamma spectroscopy, in Proceedings of GAMMA-2 scientific workshop on the emission of prompt gamma rays in fission and related topics, Novi Sad, Serbia (2013).

  36. A.J. Koning et al., AIP Conf. Proc. 769, 1154 (2005).

    Article  ADS  Google Scholar 

  37. H. Naik et al., Nucl. Instum. Methods B 269, 1417 (2011).

    Article  ADS  Google Scholar 

  38. C.F. Weizsacker, Z. Phys. 88, 612 (1934).

    Article  ADS  Google Scholar 

  39. E.J. Williams, Phys. Rev. 45, 729 (1934).

    Article  ADS  MATH  Google Scholar 

  40. J.F. Ziegler, SRIM-2008.04 (2008) http://www.srim.org/.

  41. E. Browne, R.B. Firestone, in Table of Radioactive Isotopes, edited by V.S. Shirley (Wiley, New York, 1986) R.B. Firestone, L.P. Ekstrom, in Table of Radioactive Isotopes, Version 2.1 (2004) http://ie.lbl.gov/toi/index.asp.

  42. J. Blachot, C. Fiche, Ann. Phys. Suppl. 6, 3 (1981).

    Google Scholar 

  43. H. Thierens et al., Phys. Rev. C 14, 1058 (1976).

    Article  ADS  Google Scholar 

  44. GEANT4 Collaboration (S. Agostinelli et al.), Nucl. Instrum. Methods A 506, 250 (2003).

    Article  ADS  Google Scholar 

  45. J.K. Tuli, Nuclear Wallet Cards (2011) www.nndc.bnl.gov.

  46. A.J. Koning, TALYS-1.4, A Nuclear Reaction Program, User Manual (December 28, 2011).

  47. R. Capote et al., Nucl. Data Sheets 110, 3107 (2009).

    Article  ADS  Google Scholar 

  48. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    Article  ADS  Google Scholar 

  49. S. Watanabe, Nucl. Phys. 8, 484 (1958).

    Article  Google Scholar 

  50. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952).

    Article  ADS  Google Scholar 

  51. C. Kalbach, Phys. Rev. C 33, 818 (1986).

    Article  ADS  Google Scholar 

  52. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Kim.

Additional information

Communicated by P. Woods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Kim, G.N., Kim, K. et al. Isomeric yield ratios of 87m,gY from different nuclear reactions. Eur. Phys. J. A 50, 117 (2014). https://doi.org/10.1140/epja/i2014-14117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14117-7

Keywords

Navigation