Skip to main content
Log in

First measurements of the 16O(e, e'pn)14N reaction

  • Nuclear Structure and Reactions
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

An Erratum to this article was published on 12 October 2006

Abstract.

This paper reports on the first measurement of the 16O(e, e'pn)14N reaction. Data were measured in kinematics centred on a super-parallel geometry at energy and momentum transfers of 215MeV and 316MeV/c. The experimental resolution was sufficient to distinguish groups of states in the residual nucleus but not good enough to separate individual states. The data show a strong dependence on missing momentum and this dependence appears to be different for two groups of states in the residual nucleus. Theoretical calculations of the reaction using the Pavia code do not reproduce the shape or the magnitude of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Müther, A. Polls, Prog. Part. Nucl. Phys. 45, 243 (2000).

    Article  ADS  Google Scholar 

  2. C. Barbieri, W.H. Dickhoff, Prog. Part. Nucl. Phys. 52, 337 (2004).

    Google Scholar 

  3. P. Grabmayr, Prog. Part. Nucl. Phys. 29, 251 (1992).

    Article  ADS  Google Scholar 

  4. L. Lapikas, Nucl. Phys. A 553, 297 (1993).

    Article  ADS  Google Scholar 

  5. J. Wessling, Phys. Rev. C 55, 2773 (1997).

    Article  ADS  Google Scholar 

  6. C. Barbieri, Phys. Rev. C. 70, 014606 (2004).

    Article  ADS  Google Scholar 

  7. C. Giusti, Phys. Rev. C 60, 054608 (1999).

    Article  ADS  Google Scholar 

  8. C. Giusti, Eur. Phys. J. A 17, 419 (2003).

    Article  ADS  Google Scholar 

  9. T. Neff, H. Feldmeier, Short-range repulsive and tensor correlations in nuclei, Technical Report, GSI, 2001.

  10. J. Levinger, Phys. Rev. 84, 43 (1951).

    Article  MATH  ADS  Google Scholar 

  11. K. Gottfried, Nucl. Phys. 5, 557 (1958).

    Article  Google Scholar 

  12. S. Boffi, Electromagnetic Response of Atomic Nuclei (Oxford University Press, 1996).

  13. J. Ryckebusch, Phys. Rev. C 64, 044606 (2001).

    Article  ADS  Google Scholar 

  14. J. Ryckebusch, Nucl. Phys. A 624, 581 (1997).

    Article  ADS  Google Scholar 

  15. M. Schwamb, Eur. Phys. J. A 17, 7 (2003).

    Article  ADS  Google Scholar 

  16. M. Schwamb, Eur. Phys. J. A 20, 233 (2004).

    Article  ADS  Google Scholar 

  17. A. Zondervan, Nucl. Phys. A 587, 697 (1995).

    Article  ADS  Google Scholar 

  18. L.J.H.M. Kester, Phys. Rev. Lett. 74, 1712 (1995).

    Article  ADS  Google Scholar 

  19. C.J.G. Onderwater, Phys. Rev. Lett. 78, 4893 (1997).

    Article  ADS  Google Scholar 

  20. C.J.G. Onderwater, Phys. Rev. Lett. 81, 2213 (1998).

    Article  ADS  Google Scholar 

  21. R. Starink, Phys. Lett. B 474, 33 (2000).

    Article  ADS  Google Scholar 

  22. D. Rohe, Phys. Rev. Lett. 93, 182501 (2004).

    Article  ADS  Google Scholar 

  23. G. Rosner, Prog. Part. Nucl. Phys. 44, 99 (2000).

    Article  ADS  Google Scholar 

  24. J. Ryckebusch, W. Van Nespen, Eur. Phys J. A 20, 435 (2004).

    Article  ADS  Google Scholar 

  25. D.L. Groep, Phys. Rev. C 63, 014005 (2000).

    Article  ADS  Google Scholar 

  26. I.J.D. MacGregor, Nucl. Phys. A 533, 269 (1991).

    Article  ADS  Google Scholar 

  27. L. Isaksson, Phys. Rev. Lett. 83, 3146 (1999).

    Article  ADS  Google Scholar 

  28. K.R. Garrow, Phys. Rev. C. 64, 064602 (2001).

    Article  ADS  Google Scholar 

  29. C. Giusti, Phys. Rev. C 57, 1691 (1998).

    Article  ADS  Google Scholar 

  30. R. Machleidt, Adv. Nucl. Phys. 19, 1 (1989).

    Google Scholar 

  31. H. Herminghaus, Nucl. Instrum. Methods 138, 1 (1976).

    Article  Google Scholar 

  32. N. Voegler, Nucl. Instrum. Methods 198, 293 (1982).

    Article  Google Scholar 

  33. S. Sirca, The axial form factor of the nucleon from coincident pion electro-production at low $Q^2$, PhD Thesis, University of Ljubljana, 1999.

  34. http://wwwa1.kph.uni-mainz.de/a1/target.html.

  35. K.I. Blomqvist, Nucl. Instrum. Methods Phys. Res. A 403, 263 (1998).

    Article  ADS  Google Scholar 

  36. A. Pellegrino, Nucl. Instrum. Methods Phys. Res. A 437, 188 (1999).

    Article  ADS  Google Scholar 

  37. P. Grabmayr, Nucl. Instrum. Methods Phys. Res. A 402, 85 (1998).

    Article  ADS  Google Scholar 

  38. R.M. Edelstein, Nucl. Instrum. Methods 100, 355 (1972).

    Article  ADS  Google Scholar 

  39. R.A. Cecil, Nucl. Instrum. Methods 161, 439 (1979).

    Article  Google Scholar 

  40. D. Middleton, First study of the $(e,e'pn)$ reaction, PhD Thesis, University of Glasgow, 2003.

  41. R.O. Owens, Nucl. Instrum. Methods Phys. Res. A 288, 574 (1990).

    Article  ADS  Google Scholar 

  42. M. Distler, Data acquisition and analysis for the 3-spectrometer-setup at MAMI, in Proceedings of the 12th IEEE Real Time Congress on Nuclear and Plasma Sciences, 2001, ISBN 84-699-5463-6.

  43. L. Mo, Y. Tsai, Rev. Mod. Phys. 41, 205 (1969).

    Article  ADS  Google Scholar 

  44. J. Ryckebusch, Phys. Rev. C 61, 021603 (2000).

    Article  ADS  Google Scholar 

  45. D.P. Watts, Phys. Rev. C 62, 014616 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Middleton.

Additional information

R. Milner

An erratum to this article is available athttp://dx.doi.org/10.1140/epja/i2006-10131-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middleton, D.G., Annand, J.R.M., Barbieri, C. et al. First measurements of the 16O(e, e'pn)14N reaction. Eur. Phys. J. A 29, 261–270 (2006). https://doi.org/10.1140/epja/i2005-10314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10314-9

PACS.

Navigation