Skip to main content
Log in

The one-body and two-body density matrices of finite nuclei with an appropriate treatment of the center-of-mass motion

  • Nuclear Structure and Reactions
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The one-body and two-body density matrices in coordinate space and their Fourier transforms in momentum space are studied for a nucleus (a nonrelativistic, self-bound finite system). Unlike the usual procedure, suitable for infinite or externally bound systems, they are determined as expectation values of appropriate intrinsic operators, dependent on the relative coordinates and momenta (Jacobi variables) and acting on intrinsic wave functions of nuclear states. Thus, translational invariance (TI) is respected. When handling such intrinsic quantities, we use an algebraic technique based upon the Cartesian representation, in which the coordinate and momentum operators are linear combinations of the creation and annihilation operators \( \hat{{\vec{a}}}^{{{\dagger}}}_{{}}\) and \( \hat{{\vec{a}}}\) for oscillator quanta. Each of the relevant multiplicative operators can then be reduced to the form: one exponential of the set {\( \hat{{\vec{a}}}^{{{\dagger}}}_{{}}\)} times another exponential of the set {\( \hat{{\vec{a}}}\)}. In the course of such a normal-ordering procedure we offer a fresh look at the appearance of “Tassie-Barker” factors, and point out other model-independent results. The intrinsic wave function of the nucleus in its ground state is constructed from a nontranslationally-invariant (nTI) one via existing projection techniques. As an illustration, the one-body and two-body momentum distributions (MDs) for the 4He nucleus are calculated with the Slater determinant of the harmonic-oscillator model as the trial, nTI wave function. We find that the TI introduces quite important effects in the MDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.O. Löwdin, Phys. Rev. 97, 1474 (1955).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. O. Benhar, A. Fabrocini (Editors), Proceedings of the Workshop on Two-Nucleon Emission Reactions, Elba International Physics Center, Italy, 1989 (ETS Edition, Pisa 1990).

  3. A. Braghieri, C. Giusti, P. Grabmayr (Editors), Proceedings of the 6th Workshop on Electromagnetically Induced Two-Hadron Emission, Pavia, Italy September 24-27, 2003.

  4. T. Walcher, Prog. Part. Nucl. Phys. 50, 503 (2003).

    Article  ADS  Google Scholar 

  5. R.A. Niyazov, Phys. Rev. Lett. 92, 052303 (2004).

    Article  ADS  Google Scholar 

  6. A.V. Stavinsky (CLAS Collaboration), Phys. Rev. Lett. 93, 192301 (2004).

    Article  Google Scholar 

  7. P. Papakonstantinou, E. Mavrommatis, T.S. Kosmas, Nucl. Phys. A 673, 171 (2000).

    Article  ADS  Google Scholar 

  8. Ch. Moustakidis, P. Papakonstantinou, E. Mavrommatis, arXiv: nucl-th/0511056.

  9. G. Orlandini, L. Sarra, Proceedings of the 2nd Workshop on Electromagnetically Induced Two-Nucleon Emission, Gent, May 17-20, 1995 (University of Gent, 1995) p. 1.

  10. S.S. Dimitrova, D.N. Kadrev, A.N. Antonov, M.V. Stoitsov, Eur. Phys. J. A 7, 335 (2000).

    Article  ADS  Google Scholar 

  11. P. Papakonstantinou, E. Mavrommatis, T.S. Kosmas, Nucl. Phys. A 713, 81 (2003).

    Article  ADS  Google Scholar 

  12. J.P. Elliot, T.H. Skyrme, Proc. R. Soc. London, Ser. A 232, 561 (1955).

    Google Scholar 

  13. A.E.L. Dieperink, T. de Forest, Phys. Rev. C 10, 543 (1974).

    Article  ADS  Google Scholar 

  14. T. de Forest, Phys. Rev. C 22, 2222 (1980).

    Article  ADS  Google Scholar 

  15. L.J. Tassie, C.F. Barker, Phys. Rev. 111, 940 (1958).

    Article  ADS  Google Scholar 

  16. S. Gartenhaus, C. Schwartz, Phys. Rev. 108, 482 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. R. Peierls, J. Yoccoz, Proc. Phys. Soc. A 70, 381 (1957).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. D.J. Ernst, C.M. Shakin, R.M. Thaler, Phys. Rev. C 7, 925 (1973).

    Article  ADS  Google Scholar 

  19. D.J. Ernst, C.M. Shakin, R.M. Thaler, Phys. Rev. C 7, 1340 (1973).

    Article  ADS  Google Scholar 

  20. C.M. Vincent, Phys. Rev. C 8, 929 (1973).

    Article  ADS  Google Scholar 

  21. A.V. Shebeko, N.N. Goncharov, Sov. J. Nucl. Phys. 18, 532 (1974).

    Google Scholar 

  22. S. Dementiji, V. Ogurtzov, A. Shebeko, N.G. Afanasiev, Sov. J. Nucl. Phys. 22, 6 (1976).

    Google Scholar 

  23. J.L. Friar, Nucl. Phys. A 173, 257 (1971).

    Article  ADS  Google Scholar 

  24. K.W. Schmid, F. Grümmer, Z. Phys. A 336, 5 (1990).

    Google Scholar 

  25. K.W. Schmid, F. Grümmer, Z. Phys. A 337, 267 (1990).

    Google Scholar 

  26. K.W. Schmid, Eur. Phys. J. A 12, 29 (2001)

    Article  ADS  Google Scholar 

  27. R.R. Rodriguez-Guzman, K.W. Schmid, Eur. Phys. J. A 19, 45

  28. B. Mihaila, J.H. Heisenberg, Phys. Rev. C 60, 054303 (1999).

    Article  ADS  Google Scholar 

  29. M. Grypeos, C. Koutroulos, A. Shebeko, K. Ypsilantis, Part. Nucl. Lett. 2, 111 (2002).

    Google Scholar 

  30. D. Van Neck, M. Waroquier, Phys. Rev. C 58, 3359 (1998).

    Article  ADS  Google Scholar 

  31. P. Papakonstantinou, PhD Thesis, University of Athens, 2004.

  32. M. Dal Ri, S. Stringari, O. Bohigas, Nucl. Phys. A 376, 81 (1982).

    Article  ADS  Google Scholar 

  33. M.L. Goldberger, K.M. Watson, Collision Theory (John Wiley and Sons, 1964).

  34. A. Bohr, B.R. Mottelson, Nucleal Structure I (A. Benjamin, New York, 1969).

  35. V. Neudachin, Yu. Smirnov, Nucleon Clusters in Light Nuclei (Nauka, Moscow, 1964).

  36. N.H. March, W.H. Young, S. Sampanthar, The Many-Body Problem in Quantum Mechanics (Cambridge University Press, London, 1967).

  37. A. Antonov, P.E. Hodgson, I.Zh. Petkov, Nucleon Momentum and Density Distributions in Nuclei (Clarendon Press, Oxford, 1988).

  38. A. Antonov, P.E. Hodgson, I.Zh. Petkov, Nucleon Correlations in Nuclei (Springer-Verlag, Berlin-Heidelberg-New York, 1993).

  39. A.Yu. Korchin, A.V. Shebeko, Z. Phys. A 321, 687 (1985) and references therein.

    Article  Google Scholar 

  40. C. Ciofi degli Atti, E. Pace, G. Salme, Phys. Lett. B 141, 14 (1984).

    Article  ADS  Google Scholar 

  41. A.Yu. Korchin, A.V. Shebeko, Ukr. J. Phys. 22, 1646 (1977)

    Google Scholar 

  42. R.E. Peierls, D.J. Thouless, Nucl. Phys. 38, 154 (1962).

    Article  MATH  MathSciNet  Google Scholar 

  43. T.S. Kosmas, J.D. Vergados, Nucl. Phys. A 536, 72 (1992).

    Article  ADS  Google Scholar 

  44. C. Ciofi degli Atti, Prog. Part. Nucl. Phys. 3, 163 (1980).

    Article  ADS  Google Scholar 

  45. S.V. Dementij, J. Phys. Soc. Jpn. 57, 2988 (1988).

    Article  Google Scholar 

  46. A.V. Shebeko, Lectures on Selected Topics of Nuclear Theory, Aristotle University of Thessaloniki, 2000.

  47. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  48. A.V. Shebeko, M.I. Shirokov, Prog. Part. Nucl. Phys. 44, 75 (2000)

    Article  ADS  Google Scholar 

  49. B. Hamme, W. Glöckle, Few-Body Syst. 13, 1 (1992).

    Article  MathSciNet  Google Scholar 

  50. D.H. Lu, A.W. Thomas, A.G. Williams, Phys. Rev. C 57, 2628 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. Molinari

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shebeko, A., Papakonstantinou , P. & Mavrommatis, E. The one-body and two-body density matrices of finite nuclei with an appropriate treatment of the center-of-mass motion . Eur. Phys. J. A 27, 143–155 (2006). https://doi.org/10.1140/epja/i2005-10247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2005-10247-3

PACS.

Navigation