Skip to main content
Log in

Comparison of Monte Carlo methods for adjoint neutron transport

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Solving the adjoint linear transport equation by Monte Carlo methods can be convenient for applications emerging in radiation shielding, where the detector is typically small (in terms of probability of detecting a signal). In this work we compare a few stochastic models that can be used in order to formally solve the adjoint transport equation by simulating artificial particles called adjunctons: these models differ in the form of adjuncton cross-sections, scattering laws and multiplicities. In view of testing the accuracy and the performances of these schemes, we have selected some benchmark configurations for continuous-energy transport in infinite media, where reference solutions can be established. The role of population control techniques, such as Russian roulette and splitting, is also carefully examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Lux, L. Koblinger, Monte Carlo Particle Trasport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Florida, 1991)

  2. J.J. Duderstadt, W.R. Martin, Transport Theory (Wiley, NY, 1979)

  3. J. Lewins, Importance: The Adjoint Function (Pergamon Press, London, 1965)

  4. G. Goertzel, M.H. Kalos, Monte Carlo Methods in Transport Problems, in Progress in Nuclear Energy, Vol. 2, Series 1 (Pergamon Press, NY, 1958)

  5. J.E. Hoogenboom, Nucl. Sci. Eng. 160, 1 (2008)

    Article  Google Scholar 

  6. M.H. Kalos, Nucl. Sci. Eng. 33, 284 (1968)

    Article  Google Scholar 

  7. L.B. Levitt, J. Spanier, Nucl. Sci. Eng. 37, 278 (1969)

    Article  Google Scholar 

  8. B. Eriksson, C. Johansson, M. Leimdorfer, M.H. Kalos, Nucl. Sci. Eng. 37, 410 (1969)

    Article  Google Scholar 

  9. C.W. Maynard, Nucl. Sci. Eng. 82, 97 (1961)

    Article  Google Scholar 

  10. L.L. Carter, N.J. McCormick, Nucl. Sci. Eng. 39, 296 (1970)

    Article  Google Scholar 

  11. D.C. Irving, Nucl. Eng. Design 15, 273 (1971)

    Article  Google Scholar 

  12. A. De Matteis, Meccanica 3, 162 (1974)

    Article  MathSciNet  Google Scholar 

  13. J.E. Hoogenboom, Adjoint Monte Carlo Methods in Neutron Transport Calculations, PhD Thesis, Delft, NL (1977)

  14. J.E. Hoogenboom, Nucl. Sci. Eng. 79, 357 (1981)

    Article  Google Scholar 

  15. A. De Matteis, R. Simonini, Nucl. Sci. Eng. 65, 93 (1978)

    Article  Google Scholar 

  16. L.L. Carter, Los Alamos scientific report LA4488 (1970)

  17. R.J. Brissenden, Prog. Nucl. Energy 24, 129 (1990)

    Article  Google Scholar 

  18. M.J. Grimstone, in Proceedings of the ANS Radiation Protection and Shielding Division Topical Conference (Nashville, April 19–23, 1998) pp. 143--150

  19. J.E. Hoogenboom, in Proceedings of the International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, M&C 99 (Madrid, September 27–30, 1999) pp. 1912--1921

  20. J.E. Hoogenboom, Nucl. Sci. Eng. 143, 99 (2003)

    Article  Google Scholar 

  21. C.M. Diop, O. Petit, C. Jouanne, M. Coste-Delclaux, Ann. Nucl. Energy 37, 1186 (2010)

    Article  Google Scholar 

  22. P. Saracco, S. Dulla, P. Ravetto, Eur. Phys. J. Plus 131, 412 (2016)

    Article  Google Scholar 

  23. M.L. Williams, Nucl. Sci. Eng. 108, 355 (1991)

    Article  Google Scholar 

  24. I.V. Serov, T.M. John, J.E. Hoogenboom, Nucl. Sci. Eng. 133, 55 (1999)

    Article  Google Scholar 

  25. T. Ueki, J.E. Hoogenboom, J.L. Kloosterman, Nucl. Sci. Eng. 137, 117 (2001)

    Article  Google Scholar 

  26. E. Brun, F. Damian, C.M. Diop, E. Dumonteil, F.X. Hugot, C. Jouanne, Y.K. Lee, F. Malvagi, A. Mazzolo, O. Petit, J.C. Trama, T. Visonneau, A. Zoia, Ann. Nucl. Energy 82, 151 (2015)

    Article  Google Scholar 

  27. G. Placzek, Phys. Rev. 69, 423 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  28. V. Weisskopf, Phys. Rev. 52, 295 (1937)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Zoia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitali, V., Dulla, S., Ravetto, P. et al. Comparison of Monte Carlo methods for adjoint neutron transport. Eur. Phys. J. Plus 133, 317 (2018). https://doi.org/10.1140/epjp/i2018-12132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12132-9

Navigation