Abstract

In this paper, time and energy costs for achieving synchronization of the Kuramoto-oscillator network with or without noise perturbation are investigated. In order to achieve synchronization and optimize time and energy consumption, a novel switching controller is designed, which combines the advantages of both the proportional feedback control method and the finite-time control technology. Sufficient conditions for achieving synchronization are established, and the estimates of time and energy costs are obtained mathematically as well. Particularly, the theoretical analysis and simulating calculation show that there exists a trade-off between time and energy costs. That is to say, the energy consumption can be reduced by adjusting the control parameters, but the time cost will increase inevitably, and vice versa. Further, we find that for fixed weights of time and energy costs of the performance index, the optimal values of parameters can be chosen to minimize the total cost.

Keywords

  1. Kuramoto-oscillator network
  2. synchronization
  3. noise
  4. time cost
  5. energy cost

MSC codes

  1. 34F05
  2. 34H05
  3. 92B25

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), pp. 137--185.
2.
N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, UK, 2004.
3.
J.C. Bronski, L. Deville, and T. Ferguson, Graph homology and stability of coupled oscillator networks, SIAM J. Appl. Math., 76 (2016), pp. 1126--1151.
4.
Y.P. Choi, S.-Y. Ha, S. Jung, and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D, 241 (2012), pp. 735--754.
5.
N. Chopra and M.W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control, 54 (2009), pp. 353--357.
6.
W.S. Chen and L.C. Jiao, Finite-time stability theorem of stochastic nonlinear systems, Automatica, 46 (2010), pp. 2105--2108.
7.
K. Ding and Q. Zhu, A note on sampled-data synchronization of Memristor networks subject to actuator failures and two different activations, IEEE Trans. Circuits Syst. II Express Briefs, 68 (2021), pp. 2097--2101.
8.
G.P. Duan, A. Li, T. Meng, G.F. Zhang, and L. Wang, Energy cost for controlling complex networks with linear dynamics, Phys. Rev. E, 99 (2019), 52305.
9.
F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2010), pp. 1070--1099.
10.
J.G. Dong, S.-Y. Ha, and D. Kim, Emergent behaviors of the Kuramoto model with a time delay on a general digraph, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 304--328.
11.
J.G. Dong and X.P. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), pp. 465--480.
12.
J.G. Dong and X. Xue, Finite-time synchronization of Kuramoto-type oscillators, Nonlinear Anal. Real World Appl., 26 (2015), pp. 133--149.
13.
R. Erban, J. Haskovec, and Y.Z. Sun, A Cucker--Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), pp. 1535--1557.
14.
G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, UK, 1952.
15.
R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
16.
V.T. Haimo, Finite time controllers, SIAM J. Control Optim., 24 (1986), pp. 760--770.
17.
S.-Y. Ha and M.J. Kang, On the basin of attractors for the unidirectionally coupled Kuramoto model in a ring, SIAM J. Appl. Math., 72 (2012), pp. 1549--1574.
18.
S.-Y. Ha, H.K. Kim, and J. Park, Remarks on the complete synchronization of Kuramoto oscillators, Nonlinearity, 28 (2015), pp. 1441--1462.
19.
S.-Y. Ha, H.K. Kim, and S.W. Ryoo, On the finiteness of collisions and phase-locked states for the Kuramoto model, J. Stat. Phys., 163 (2016), pp. 1394--1424.
20.
S.-Y. Ha, H.K. Kim, and S.W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), pp. 1073--1091.
21.
T. Ichinomiya, Frequency synchronization in random oscillator network, Phys. Rev. E, 70 (2004), 026116.
22.
F. Kong, Q. Zhu, R. Sakthivel, and A. Mohammadzadeh, Fixed-time synchronization analysis for discontinuous fuzzy inertial neural networks with parameter uncertainties, Neurocomputing, 422 (2021), pp. 295--313.
23.
Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics, H. Araki, ed., Lecture Notes in Phys. 39, Springer, Cham, 1975, pp. 420--422.
24.
Y. Kuramoto, Collective synchronization of pulse-coupled oscillators and excitable units, Phys. D, 50 (1991), pp. 15--30.
25.
H. Kori, Y. Kawamura, and N. Masuda, Structure of cell networks critically determines oscillation regularity, J. Theor. Biol., 297 (2012), pp. 61--72.
26.
N.E. Leonard, T. Shen, B. Nabet, L. Scardovi, I.D. Couzin, and S.A. Levin, Decision versus compromise for animal groups in motion, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 227--232. Academy of Sciences
27.
X. Mao, Stochastic Differential Equations and Applications, 2nd ed., Academic Press, New York, 2016.
28.
S. Nie, H.E. Stanley, S.-M. Chen, B.-H. Wang, and X.-W. Wang, Control energy of complex networks towards distinct mixture states, Sci. Rep., 8 (2018), 10866.
29.
H.R. Pitt and N. Wiener, Nonlinear problems in random theory. Math. Gaz., 48 (1964), pp. 356--357.
30.
B. Sonnenschein and L. Schimansky-Geier, Onset of synchronization in complex networks of noisy oscillators, Phys. Rev. E, 85 (2012), 051116.
31.
Y. Sun, W. Lin, and E. Erban, Time delay can facilitate coherence in self-driven interacting-particle systems, Phys. Rev. E, 90 (2014), 062708.
32.
Y. Sun, S. Leng, Y. Lai, C. Grebogi, and W. Lin, Closed-loop control of complex networks: A trade-off between time and energy, Phys. Rev. Lett., 119 (2017), 198301.
33.
Y. Sun, W. Li, H. Shi, D. Zhao, and S. Azaele, Finite-time and fixed-time consensus of multiagent networks with pinning control and noise perturbation, SIAM J. Appl. Math., 79 (2019), pp. 111--130.
34.
K. Vasudevan, M. Cavers, and A. Ware, Earthquake sequencing: Chimera states with Kuramoto model dynamics on directed graphs, Nonlinear Process. Geophys., 22 (2015), pp. 499--512.
35.
J. Wu and X. Li, Finite-time and fixed-time synchronization of Kuramoto-oscillator network with multiplex control, IEEE Trans. Control Netw. Syst., 6 (2019), pp. 863--873.
36.
J. Wu and X. Li, Global stochastic synchronization of Kuramoto-oscillator networks with distributed control, IEEE Trans. Cybernet., (51) 2021, pp. 5825--5835.
37.
G. Yan, J. Ren, Y.C. Lai, C.H. Lai, and B.W Li, Controlling complex networks: How much energy is needed?, Phys. Rev. Lett., 108 (2012), 218703.

Information & Authors

Information

Published In

cover image SIAM Journal on Applied Mathematics
SIAM Journal on Applied Mathematics
Pages: 1336 - 1355
ISSN (online): 1095-712X

History

Submitted: 9 November 2021
Accepted: 25 April 2022
Published online: 26 July 2022

Keywords

  1. Kuramoto-oscillator network
  2. synchronization
  3. noise
  4. time cost
  5. energy cost

MSC codes

  1. 34F05
  2. 34H05
  3. 92B25

Authors

Affiliations

Funding Information

Fundamental Research Funds for the Central Universities https://doi.org/10.13039/501100012226 : 2020ZDPYMS41
National Natural Science Foundation of China https://doi.org/10.13039/501100001809 : 2211001016

Metrics & Citations

Metrics

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited By

There are no citations for this item

View Options

View options

PDF

View PDF

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share on social media